Skip to main content

Understanding the Seismic Velocity Structure of Campi Flegrei Caldera (Italy): From the Laboratory to the Field Scale

  • Chapter
Rock Damage and Fluid Transport, Part II

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

We report laboratory measurements of P- and S-wave velocities on samples of tuff from Campi Flegrei (Italy), and a new tomographic velocity map of the Campi Flegrei caldera. Laboratory measurements were made in a hydrostatic pressure vessel during both increasing and decreasing effective pressure cycles. Selected samples were also thermally stressed at temperatures up to 600°C to induce thermal crack damage. Acoustic emission output was recorded throughout each thermal stressing experiment, and velocities were measured after thermal stressing. Laboratory P- and S-wave velocities are initially low for the tuff, which has an initial porosity of ∼45%, but both increase by between 25 and 50% over the effective pressure range of 5 to 80 MPa, corresponding to a decrease of porosity of ∼70%. Marked velocity hysteresis, due to inelastic damage processes, is also observed in samples subjected to a pressurization-depressurization cycle. Tomographic seismic velocity distributions obtained from field recordings are in general agreement with the laboratory measurements. Integration of the laboratory ultrasonic and seismic tomography data indicates that the tuffs of the Campi Flegrei caldera can be water or gas saturated, and shows that inelastic pore collapse and cracking produced by mechanical and thermal stress can significantly change the velocity properties of Campi Flegrei tuffs at depth. These changes need to be taken into account in accurately interpreting the crustal structure from tomographic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aster, R. C. and Meyer, R. P. (1988), Three-dimensional velocity structure and hypocenter distribution in the Campi Flegrei caldera, Italy, Tectonophysics 149, 195–218.

    Article  Google Scholar 

  • Benson, P. M., Meredith, P. G., Platzman, E. S., and White, R. E. (2005), Pore fabric shape anisotropy in porous sandstone and its relation to elastic and permeability anisotropy under hydrostatic pressure, Int. J. Rock Mech. and Min. Sci. 42, 890–899.

    Article  Google Scholar 

  • Bianchi, R., Cordini, A., Federico, C., Giberti, G., Lanciano, P., Pozzi, J. P., Sartoris, G., and Scandone, R. (1987), Modeling of surface deformation in volcanic areas: The 1970–1972 and 1982–1984 crises of Campi Flegrei, Italy, J. Geophys. Res. 92, 14139–14150.

    Google Scholar 

  • Bonafede, M. and Mazzanti, M. (1998), Modelling gravity variations consistent with ground deformation in the Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res. 81, 137–157.

    Article  Google Scholar 

  • Bonafede, M., Dragoni, M., and Quareni, F. (1986), Displacements and stress fields produced by a centre of dilatation and by a pressure source in a viscoelastic half-space: Application to the study of ground deformation and seismic activity at Campi Flegrei, Italy, Geophys. J. R. Astr. Soc. 87, 455–485.

    Google Scholar 

  • De Gennaro, M., Incoronato, A., Mastrolorenzo, G., Adabbo, M., and Spina, G. (1999), Depositional mechanisms and alteration processes in different types of pyroclastic deposits from Campi Flegrei volcanic field (Southern Italy), J. Volc. Geoth. Res. 91, 303–320.

    Article  Google Scholar 

  • De Natale, G., Ferraro, A., and Virieux, J. A. (1991), A probability method for local earthquake focal mechanisms, Geophys. Res. Lett. 18 (4), 613–616.

    Google Scholar 

  • De Natale, G., and Pingue, F. (1993), Ground deformations in collapsed caldera structures, J. Volcanol. Geotherm. Res. 57, 19–38.

    Article  Google Scholar 

  • De Natale, G., Petrazzuoli, S. M., and Pingue, F. (1997), The effect of collapse structures on ground deformations in calderas, Geophys. Res. Lett. 24 (13), 1555–1558.

    Article  Google Scholar 

  • De Natale, G., Troise, C., and Pingue, F. (2001), A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera, J. Geodynamics 32, 487–517.

    Article  Google Scholar 

  • De Natale, G., Zollo, A., Ferraro, A., and Virieux, J. (1995), Accurate fault mechanism determinations for a 1984 earthquake swarm at Campi Flegrei caldera (Italy) during an unrest episode: Implications for volcanological research, J. Geophys. Res. 100, 24167–24185.

    Article  Google Scholar 

  • Dvorak, J. J. and Berrino, D. (1991), Recent ground movement and seismic activity in Campi Flegrei, southern Italy: Episodic growth of a resurgent dome, J. Geophys. Res. 96, 2309–2323.

    Google Scholar 

  • Eberhart-Phillips, D., Local earthquake tomography: earthquake source regions. In Seismic Tomography: Theory and Practice (eds. by Iyer, H. M. and Hirahara, K) (Chapman & Hall, London, 1993).

    Google Scholar 

  • Gaeta, F. S., De Natale, G., Peluso, F., Mastrolorenzo, G., Castagnolo, D., Troise, C., Pingue, F., Mita, D. G., and Rossano, S. (1998), Genesis and evolution of unrest episodes at Campi Flegrei caldera: The role of thermal fluid-dynamical processes in the geothermal system, J. Geophys. Res. 103, 921–933.

    Article  Google Scholar 

  • Gaeta, F. S., Peluso, F., Arienzo, I., Castagnolo, D., De Natale, G., Milano, G., Albanese, C., and Mita, D. G. (2003), A physical appraisal of a new aspect of bradyseism: The miniuplifts, J. Geophys. Res. 108, B8, 10, 1029/2002JB001913.

    Article  Google Scholar 

  • Mavko, G. and Nur, A. (1975), Melt squirt in the asthenosphere, J. Geophys. Res. 80, 1444–1448.

    Article  Google Scholar 

  • O’Connell, R. and Budiansky, B. (1976), Seismic velocities in dry and saturated cracked solids, J. Geophys. Res. 79, 5413–5426.

    Google Scholar 

  • Presti, D., Troise, C., and De Natale, G. (2004), Probabilistic location of seismic sequences in heterogeneous media, Bull. Seismo. Soc. Am. 94 (6), 2239–2253.

    Article  Google Scholar 

  • Pujol, J. (2000), Comment on Laboratory measurements of ultrasonic wave velocities in rocks from the Campi Flegrei volcanic system and their relation to other field data by M. Zamora, G. Sartoris, and W. Chelini, J. Geophys. Res. 105 (B9), 21537–21542.

    Article  Google Scholar 

  • Rosi, M. and Sbrana, A. (1987), Phlegraean Fields: Rome. Quaderni de “La Ricerca Scientifica” 9 (114), 175 pp.

    Google Scholar 

  • Schubnel, A. and Guéguen, Y. (2003), Dispersion and Anisotropy in Cracked Rocks, J. Geophys. Res. 108, 2101, doi: 10. 1029/2002JB001824.

    Google Scholar 

  • Thomsen, L. (1985), Biot-consistent elastic moduli of porous rocks: the low frequency limit, Geophysics 50, 2797–2807.

    Article  Google Scholar 

  • Thurber, C. H., Local earthquake tomography: velocities and Vp/Vs —theory. In Seismic Tomography: Theory and Practice (eds. Iyer H. M. and Hirahara K) (Chapman&Hall, London, 1993).

    Google Scholar 

  • Troise, C., De Natale, G., Pingue, F., and Zollo, A. (1997), A model for earthquake generation during unrest episodes at Campi Flegrei and Rabaul calderas, Geophys. Res. Lett. 24 (13), 1575–1578.

    Article  Google Scholar 

  • Troise, C., Castagnolo, F., Peluso, F., Gaeta, F. S., Mastrolorenzo, G., and De Natale, G. (2001), A 2D mechanical-thermal fluid-dynamical model for geothermal system at calderas: An application to Campi Flegrei, J. Volcanol. Geotherm. Res. 109, 1–12.

    Article  Google Scholar 

  • Troise, C., Pingue, F., and De Natale, G. (2003), Coulomb stress changes at calderas: Modeling the seismicity of Campi Flegrei (Southern Italy), J. Geophys. Res. 108, B6, 2292, doi: 10.1029/2002JB002006.

    Article  Google Scholar 

  • Vanorio, T., Prasad, M., Patella, D., and Nur, A. (2002), Ultrasonic velocity measurements in volcanic rocks: Correlation with microtexture. Geophys, J. Internat. 149, 22–36.

    Article  Google Scholar 

  • Vanorio, T., Virieux, J., Capuano, P., and Russo, G. (2005), Three-dimensional seismic tomography from P-wave and S-wave microearthquake travel times and rock physics characterization of the Campi Flegrei caldera, J. Geophys. Res. 110, B03201, doi: 10.1029/2004JB003102.

    Article  Google Scholar 

  • Vinciguerra, S., Trovato, C., Meredith, P. G., and Benson, P. M. (2005), Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts, Int. J. Rock Mech. and Min. Sci. 42, 900–910.

    Article  Google Scholar 

  • Zamora, M., Sartoris, G., and Chelini, W. (1994), Laboratory measurements of ultrasonic wave velocities in rocks from the Campi Flegrei volcanic system and their relation to other field data, J. Geophys. Res. 99, B7, 13553–13562.

    Article  Google Scholar 

  • Zamora, M., Sartoris, G., and Chelini, W. (2001), Reply to comment by Jose Pujol on “Laboratory measurements of ultrasonic wave velocities in rocks from the Campi Flegrei volcanic system and their relation to other field data”, J. Geophys. Res. 106, B2, 2163–2166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag

About this chapter

Cite this chapter

Vinciguerra, S., Trovato, C., Meredith, P., Benson, P., Troise, C., De Natale, G. (2006). Understanding the Seismic Velocity Structure of Campi Flegrei Caldera (Italy): From the Laboratory to the Field Scale. In: Zang, A., Stephansson, O., Dresen, G. (eds) Rock Damage and Fluid Transport, Part II. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8124-0_9

Download citation

Publish with us

Policies and ethics