Models with Lattice-free Center-based Cells Interacting with Continuum Environment Variables

  • John C. Dallon
Part of the Mathematics and Biosciences in Interaction book series (MBI)


In this chapter we describe a discrete continuum hybrid method applied to two biological systems. The cells are modeled as discrete objects which are free to move in space (lattice-free), the forces which act on the cells are applied to their center of mass (center-based), and the cells interact with something represented as a continuum variable. Dictyostelium discoideum is the first system modeled by the method. The cells move and communicate with each other through a diffusible chemical. In the second system, scar tissue formation, the cells interact with the extracellular matrix which is represented as a continuous vector field.


Dictyostelium Discoideum Scar Tissue Formation Continuous Vector Field Continuum Environment Continuum Hybrid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. A. Brock, F. Buczynski, T. P. Spann, S. A. Wood, J. Cardelli, and R. H. Gomer. A Dictyostelium mutant with defective aggregate size determination. Development, 122:2569–2578, 1996.Google Scholar
  2. [2]
    P. Clark, P. Connolly, A. S. G. Curtis, and C. C. W. Wilkinson. Topographical control of cell behaviour. iii. multiple grooved substrata. Dev., 108:635–644, 1990.Google Scholar
  3. [3]
    R. A. F. Clark. Wound repair. Curr. Opin. Cell Biol., 1:1000–1008, 1989.CrossRefGoogle Scholar
  4. [4]
    R. A. F. Clark. Wound repair overview and general considerations. In R. A. F. Clark, editor, The Molecular and Cellular Biology of Wound Repair, pages 3–50. Plenum Press, 2 edition, 1996.Google Scholar
  5. [5]
    R. A. F. Clark, L. D. Nielsen, M. P. Welch, and J. M. McPherson. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-β. J. Cell Sci., 108:1251–1261, 1995.Google Scholar
  6. [6]
    J. C. Dallon. Numerical aspects of discrete and continuum hybrid models in cell biology. Applied Numerical Mathematics, 32:137–159, 2000.MATHCrossRefGoogle Scholar
  7. [7]
    J. C. Dallon and H. G. Othmer. A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Phil. Trans. Roy. Soc. London: Series B, 352(1357):391–417, 1997.CrossRefGoogle Scholar
  8. [8]
    J. C. Dallon and H. G. Othmer. How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J. Theor. Biol., 231:203–222, 2004.CrossRefGoogle Scholar
  9. [9]
    J. C. Dallon, J. A. Sherratt, P. K. Maini, and M. W. J. Ferguson. Biological implications of a discrete mathematical model for collagen deposition and alignment in dermal wound repair. IMA J. Math. Appl. Med. Biol., 17:379–393, 2000.MATHCrossRefGoogle Scholar
  10. [10]
    J. C. Dallon, W. Jang, and R. H. Gomer. Mathematically modeling the effects of counting factor (cf) in dictyostelium discoideum. Math. Med. Biol., 23:45.Google Scholar
  11. [11]
    J. C. Dallon, J. A. Sherratt, and P. K. Maini. Modeling the effects of transforming growth factor-β on extracellular matrix alignment in dermal wound repair. Wound Repair and Regeneration, 9(4):278–286, 2001.CrossRefGoogle Scholar
  12. [12]
    R. Durrett and S. Levin. The importance of being discrete (and spatial). Theor. Popul. Biol., 46:363–394, 1994.MATHCrossRefGoogle Scholar
  13. [13]
    H. P. Ehrlich and T. M. Krummel. Regulation of wound healing from a connective tissue perspective. Wound Repair Regen, 4:203–210, April–June 1996.CrossRefGoogle Scholar
  14. [14]
    R. Futrelle, J. Traut, and W. G. McKee. Cell behavior in Dictyostelium discoideum: preaggregation response to localized cyclic AMP pulses. J. Cell. Biol., 92:807–821, 1982.CrossRefGoogle Scholar
  15. [15]
    M. R. Gibbons and D. W. Hewett. Characterization of the darwin direct implicit particle-in-cell mehod and resulting guidelines for operation. J. Comp. Phys., 130(1):54–66, 1997.MATHCrossRefGoogle Scholar
  16. [16]
    S. Guido and R. T. Tranquillo. A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. J. Cell Sci., 105:317–331, 1993.Google Scholar
  17. [17]
    R. W. Hockney and J. W. Eastwood. Computer Simulations Using Particles. Institute of Physics Publishing, 1988.Google Scholar
  18. [18]
    P. Hsieh and L. B. Chen. Behavior of cells seeded on isolated fibronectin matrices. J. Cell Biol., 96:1208–1217, 1983.CrossRefGoogle Scholar
  19. [19]
    R. W. Jennings and T. K. Hunt. Overview of postnatal wound healing. In N. S. Adzick and M. T. Longaker, editors, Fetal Wound Healing, pages 25–52. Elsevier Science Publishing Company, 1992.Google Scholar
  20. [20]
    P. J. O’Rourke and J. U. Brackbill. On particle-grid interpolation and calculating chemistry in particle-in-cell methods. J. Comp. Phys., 109:37–52, 1993.MATHCrossRefGoogle Scholar
  21. [21]
    E. Palsson and H. G. Othmer. A model for individual and collective cell movement in dictyostelium discoideum. Proc. Nat. Acad. Sci. USA, 97:10448–10453, 2000.CrossRefGoogle Scholar
  22. [22]
    C. S. Peskin and D. M. McQueen. Fluid dynamics of the heart and its valves. In H. G. Othmer, F. R. Adler, M. A. Lewis, and J. C. Dallon, editors, Case Studies in mathematical Modeling Ecology, Physiology, and Cell Biology. Prentice Hall, 1997.Google Scholar
  23. [23]
    T. Höfer, J. A. Sherratt, and P. K. Maini. Dictyostelium discoideum: cellular self-organization in an excitable biological medium. Proc. R. Soc. Lond. B, 259(1356):249–257, March 1995.CrossRefGoogle Scholar
  24. [24]
    A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis. McGraw Hill Book Company, New York, 1978.MATHGoogle Scholar
  25. [25]
    C. Roisin-Bouffay, W. Jang, D. R. Caprette and R. H. Gomer. A precise group size in Dictyostelium is generated by a cell-counting factor modulating cell-cell adhesion. Molecular Cell, 6:953–959, October 2000.CrossRefGoogle Scholar
  26. [26]
    F. M. Ross and P. C. Newell. Streamers: Chemotactic mutants of Dictyostelium discoideum with altered cyclic gmp metabolism. J. Gen. Microbiol., 127:339–350, 1981.Google Scholar
  27. [27]
    F. Siegert and C. J. Weijer. Digital image processing of optical density wave propagation in Dictyostelium discoideum and analysis of the effects of caffeine and ammonia. J. Cell Sci., 93:325–335, 1989.Google Scholar
  28. [28]
    C-H. Siu and R. K. Kamboj. Cell-cell adhesion and morphogenesis in Dictyostelium discoideum. Developmental Genetics, 11:277–387, 1990.CrossRefGoogle Scholar
  29. [29]
    D. Skulsky, S. J. Zhou, and H. L. Schreyer. Application of a particle-in-cell method to solid mechanics. Comp. Phys. Commun, 87(1–2):236–252, 1995.CrossRefGoogle Scholar
  30. [30]
    Y. Tang and H. G. Othmer. A G-protein-based model of adaptation in Dictyostelium discoideum. Math. Biosci., 120(1):25–76, March 1994.MATHCrossRefGoogle Scholar
  31. [31]
    M. Toda. Theory of nonlinear lattices, volume 20 of Springer series in solid-state sciences. Springer, 2 edition, 1989.Google Scholar
  32. [32]
    D. J. Whitby and M. W. J. Ferguson. The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Dev., 112:651–668, 1991.Google Scholar
  33. [33]
    B. Wojciak-Stothard, M. Denyer, M. Mishra, and R. A. Brown. Adhesion orientation, and movement of cells cultured on ultrathin fibronectin fibers. In Vitro Cell. Devel. Biol., 33(2):110–117, 1997.Google Scholar
  34. [34]
    J. Xu and R. A. F. Clark. Extracellular matrix alters PDGF regulation of fibroblast integrins. J. Cell Biol., 132:239–249, 1996.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • John C. Dallon
    • 1
  1. 1.Department of MathematicsBrigham Young UniversityProvoUSA

Personalised recommendations