Center-based Single-cell Models: An Approach to Multi-cellular Organization Based on a Conceptual Analogy to Colloidal Particles

  • Dirk Drasdo
Part of the Mathematics and Biosciences in Interaction book series (MBI)


In this chapter we present a model framework for multi-cellular simulations which is built on conceptual analogies to colloidal particles. Cells are approximated as homogeneous isotropic elastic sticky objects, capable of migrating, growing, dividing and changing orientation. A cell is parameterized by biomechanical, cell-kinetic and cell-biological parameters. Each model parameter can in principle be determined experimentally. We show some simulation results for in-vitro systems and discuss the effect of model variants on simulated multi-cellular growth phenomena. The aim of this chapter is to provide an introduction and overview of the algorithms, technical concepts and the framework necessary to perform equivalent computational simulations with different model variants.


Colloidal Particle Technical Concept Conceptual Analogy 3806T 6373M 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Schienbein, K. Franke, and H. Gruler: Random walk and directed movement: comparison between inert particles and self-organized molecular machines, Phys. Rev. E 49, 5462 (1994).CrossRefGoogle Scholar
  2. [2]
    J. Mombach and J. Glazier: Single cell motion in aggregates of embryonic cells, Phys. Rev. Lett. 76, 3032 (1996).CrossRefGoogle Scholar
  3. [3]
    H. Othmer and A. Stevens: Aggregation, blowup and collapse: The abc’s of generalized taxis in reinforced random walks, SIAM J. Appl. Math. 57, 1044 (1997).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    E. Palsson and H. Othmer: A model for individual and collective cell movement in dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 12, 10448 (2000).CrossRefGoogle Scholar
  5. [5]
    A. Stevens: The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. APPL. MATH. 61, 183 (2000).MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Y.-S. C. et. al.: Johnson-kendall-roberts theory applied to living cells, Phys. Rev. Lett. 280, 312 (1999).Google Scholar
  7. [7]
    R. Carpick, D. F. Ogletree, and M. Salmeron: A gerneral equation for fitting contact area and friction vs load measurements, J. Colloid and Interface Sci 211, 395 (1999).CrossRefGoogle Scholar
  8. [8]
    D. Beysens, G. Forgacs, and J. Glazier: Cell sorting is analogous to phase ordering in fluids, Proc. Natl. Acad. Sci. USA 97, 9467 (2000).CrossRefGoogle Scholar
  9. [9]
    D. Drasdo, R. Kree, and J. McCaskill: Monte-carlo approach to tissue-cell populations, Phys. Rev. E 52, 6635 (1995).CrossRefGoogle Scholar
  10. [10]
    D. Drasdo: Different growth regimes found in a monte-carlo model of growing tissue cell populations, in Self organization of complex structures: From individual to collective dynamics, edited by F. Schweitzer (Gordon and Breach, 1996), pp. 281–291.Google Scholar
  11. [11]
    D. Drasdo: A monte carlo approach to growing solid non-vascular tumors, in Networks in Biology and Physics, edited by G. Forgacs (Springer, Berlin Heidelberg New York, 1998), pp. 171–185.Google Scholar
  12. [12]
    J. Galle, M. Loeffler, and D. Drasdo: On the temporal-spatial organization of epithelial cell populations in-vitro., in Mathematical Modelling & Computing in Biology and Medicine, edited by V. Capasso (Marcel Dekker Inc, 2003), pp. 375–385.Google Scholar
  13. [13]
    J. Galle, M. Loeffler, and D. Drasdo: Modelling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro, Biophys. J. 88, 62 (2005).CrossRefGoogle Scholar
  14. [14]
    D. Drasdo and S. Hoehme: A single-cell based model to tumor growth in-vitro: mono-layers and spheroids, Physical Biology 2, 133 (2005).CrossRefGoogle Scholar
  15. [15]
    D. Drasdo: Coarse graining in simulated cell populations, Adv. Complex Syst. 8, 319 (2005).MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    D. Drasdo, S. Hoehme, and M. Block: On the role of physics in the growth and pattern formation of multi-cellular systems: What can we learn from individual-based systems?, J. Stat Phys. (in press).Google Scholar
  17. [17]
    D. Drasdo and S. Höhme: Individual-based approaches to birth and death in avascular tumors, Math. and Comp. Modelling 37, 1163 (2003).MATHCrossRefGoogle Scholar
  18. [18]
    D. Drasdo and M. Löffler: Individual-based models on growth and folding in onelayered tissues: Intestinal crypts and blastulation, Nonl. Anal. 47, 245 (2001).MATHCrossRefGoogle Scholar
  19. [19]
    J. Galle, G. Aust, G. Schaller, T. Beyer, and D. Drasdo: Single-cell based mathematical models to the spatio-temporal pattern formation in multi-cellular systems, Cytometry 69A, 704–710 (2006)CrossRefGoogle Scholar
  20. [20]
    D. Drasdo and G. Forgacs: Modelling the interplay of generic and genetic mechanisms in cleavage, blastulation and gastrulation, Dev. Dyn. 219, 182 (2000).CrossRefGoogle Scholar
  21. [21]
    D. Drasdo: Buckling instabilities in one-layered growing tissues, Phys. Rev. Lett. 84, 4244 (2000).CrossRefGoogle Scholar
  22. [22]
    H. Eagle: Nutriention needs of mammalian cells in tissue culture, Science 122, 43 (1955).CrossRefGoogle Scholar
  23. [23]
    R. Ham: Clonal growth of mammalian cells in a chemically defined, synthetic medium, Proc. Natl. Acad. Sci. 53, 288 (1965).CrossRefGoogle Scholar
  24. [24]
    I. Hayashi and G. Sato: Replacement of serum by hormones permits growth of cells in defined medium, Nature 239, 132 (1976).CrossRefGoogle Scholar
  25. [25]
    G. Sato, A. Pardee, and D. Sirbasku: Growth of Cells in Hormonally Defined Media (Cold Spring Harbour Laboratory, 1982).Google Scholar
  26. [26]
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter: The Cell (Garland Science Publ., New York, 2002).Google Scholar
  27. [27]
    D. Drubin and W. Nelson: Origins of cell polarity, Cell 84, 335 (1996).CrossRefGoogle Scholar
  28. [28]
    DSMZ: German collection of microorganism and cell cultures, Scholar
  29. [29]
    G. Forgacs and S. Newmann: Biological Physics of the Developing Embryo (Cambridge University Press, Cambridge, 2005).Google Scholar
  30. [30]
    P. Rosen and D. Misfeldt: Cell density determines epithelial migration in culture, Proc. Natl. Acad. Sci. 77, 4760 (1980).CrossRefGoogle Scholar
  31. [31]
    N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller: Equation of state calculations by fast computing machines, J. Chem. Phys. 21, 1087 (1953).CrossRefGoogle Scholar
  32. [32]
    M. Seinberg: Reconstruction of tissues by dissociated cells, Science 141, 401 (1963).CrossRefGoogle Scholar
  33. [33]
    M. Pfeiffer: Birds flock together, Nature 395, 324 (1998).CrossRefGoogle Scholar
  34. [34]
    S. Huang and D. Ingber: The structural and mechanical complexity of cell-growth control, Nature Cell Biol. 1, E131 (1999).CrossRefGoogle Scholar
  35. [35]
    L. Davidson, M. Koehl, R. Keller, and G. Oster: How do sea urchins invaginate? Using bio-mechanics to distinguish between mechanisms of primary invagination, Development 121, 2005 (1995).Google Scholar
  36. [36]
    M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A.Z. Hrynkiewicz: Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy, European Biophysics Journal 28, 312 (1999).CrossRefGoogle Scholar
  37. [37]
    R. Mahaffy, C. Shih, F. McKintosh, and J. Kaes: Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells, Phys. Rev. Lett. 85, 880 (2000).CrossRefGoogle Scholar
  38. [38]
    J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas.: Microrheology of human lung epithelial cells measured by atomic force microscopy, Biophys. J. 84, 2071 (2003).Google Scholar
  39. [39]
    S. Chesla, P. Selvaraj, and C. Zhu: Measuring two-dimensional receptor-ligand binding kinetics by micropipette, Biophys. J 75, 1553 (1998).Google Scholar
  40. [40]
    J. Piper, R. Swerlick, and C. Zhu: Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation, Biophys. J. 74, 492 (1998).CrossRefGoogle Scholar
  41. [41]
    D. Landau: Theory of elasticity (Pergamon, 1975).Google Scholar
  42. [42]
    H. Hertz: über die berührung fester elastischer körper (on the contact of elastic solids)., J. Reine Angewandte Math. 92, 156 (1882).CrossRefGoogle Scholar
  43. [43]
    D. Landau and K. Binder: A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2000).Google Scholar
  44. [44]
    Gardiner: Handbook of Stochastic medthods (Springer, New York, 1990).Google Scholar
  45. [45]
    D. Helbing: Traffic and related self-driven many particle systems, Rev. Mod. Phys. 73, 1067 (2001).CrossRefGoogle Scholar
  46. [46]
    F. Schweitzer: Brownian agents and active particles (Springer, Berlin, Heidelberg, 2003).MATHGoogle Scholar
  47. [47]
    D. Elderfield: Field theories for kinetic growth models, J. Phys. A: Math. Gen. 18, L773 (1985).CrossRefMathSciNetGoogle Scholar
  48. [48]
    M. Block, E. Schoell, and D. Drasdo: Classifying the expansion kinetics and critical surface dynamics of growing cell populations, Cond. mat. physics/0610146 (2006).Google Scholar
  49. [49]
    M. Allen and D. Tildersley: Computer Simulation of Liquids (Oxford Science Publ., Oxford, 1987).MATHGoogle Scholar
  50. [50]
    J. Dhont: An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996).Google Scholar
  51. [51]
    H. Oettinger: Stochastic Processes in Polymeric Fluids (Springer, Berlin Heidelberg, 1993).Google Scholar
  52. [52]
    G. Schaller and M. Meyer-Hermann: Multicellular tumor spheroid in an off-lattice voronoi-delaunay cell model, Phys. Rev. E. 71, 051910 (2005).CrossRefMathSciNetGoogle Scholar
  53. [53]
    G. Odell, G. Oster, P. Alberch, and B. Burnside: The mechanical basis of morphogenesis, Dev. Biol 85, 446 (1981).CrossRefGoogle Scholar
  54. [54]
    I. Bischofs and U. Schwarz: Cell organization in soft media due to active mechanosensing, Proc. Natl. Acad. Sci. (USA) 100, 9274 (2003).CrossRefGoogle Scholar
  55. [55]
    J. Honerkamp: Stochastic Dynamic Systems (Wiley, 1993).Google Scholar
  56. [56]
    A. Bru, J. Pastor, I. Fernaud, I. Bru, S. Melle, and C. Berenguer: Super-rough dynamics of tumor growth, Phys. Rev. Lett. 81, 4008 (1998).CrossRefGoogle Scholar
  57. [57]
    C. Potten and M. Loeffler: Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. lessons for and from the crypt, Development 110, 1001 (1990).Google Scholar
  58. [58]
    S. Gilbert: Develoment (Sinauer Associates Inc., New York, 1997).Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Dirk Drasdo
    • 1
    • 2
    • 3
  1. 1.RocquencourtFrench National Institute for Research in Computer Science and Control (INRIA)Le Chesnay CedexFrance
  2. 2.Mathematics Institute and Center for Systems BiologyUniversity of WarwickCoventryUK
  3. 3.Interdisciplinary Centre for BioinformaticsUniversity of LeipzigLeipzigGermany

Personalised recommendations