The Cellular Potts Model in Biomedicine

  • Nicholas J. Savill
  • Roeland M. H. Merks
Part of the Mathematics and Biosciences in Interaction book series (MBI)


In this chapter we describe how the the Cellular Potts Model (CPM) has been applied to problems in the biomedical field. Examples are given in epidermal biology, cancer and vasculogenesis. They demonstrate the strength of the CPM and its rich set of extensions, in elucidating biomedically important phenomena.


Potts Model Computational Biology Medical Topic Important Phenomenon Biomedical Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. C. Adams and F. M. Watt. Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature, 340:307–309, 1989.CrossRefGoogle Scholar
  2. [2]
    J. C. Adams and F. M. Watt. Changes in keratinocyte adhesion during terminal differentiation-reduction in fibronectin binding precedes α-5-β-1-integrin loss from the cell-surface. Cell, 63:425–435, 1990.CrossRefGoogle Scholar
  3. [3]
    D. Ambrosi, A. Gamba, and G. Serini. Cell directional persistence and chemotaxis in vascular morphogenesis. B. Math. Biol., 66:1851–1873, 2004.CrossRefMathSciNetGoogle Scholar
  4. [4]
    A. R. A. Anderson and M. A. J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. B. Math. Biol., 60:857–899, 1998.MATHCrossRefGoogle Scholar
  5. [5]
    Y. Barrandon and H. Green. Cell size as a determinant of the clone forming ability of human keratinocytes. PNAS, 82:5390–5394, 1985.CrossRefGoogle Scholar
  6. [6]
    Y. Barrandon and H. Green. Three clonal types of keratinocytes with different capacities for multiplication. PNAS, 84:2302–2306, 1987.CrossRefGoogle Scholar
  7. [7]
    E. Dejana. Endothelial cell-cell junctions: Happy together. Nat. Rev. Mol. Cell Bio., 5:261–270, 2004.CrossRefGoogle Scholar
  8. [8]
    R. Dover and C. S. Potten. Cell cycle kinetics of cultured human epidermal keratinocytes. J. Invest. Dermatol., 80:423–429, 1983.CrossRefGoogle Scholar
  9. [9]
    J. F. Dye, L. Lawrence, C. Linge, L. Leach, J. A. Firth, and P. Clark. Distinct patterns of microvascular endothelial cell morphology are determined by extracellular matrix composition. Endothelium, 11:151–167, 2004.CrossRefGoogle Scholar
  10. [10]
    A. Gamba, D. Ambrosi, A. Coniglio, A. De Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, and F. Bussolino. Percolation morphogenesis and burgers dynamics in blood vessels formation. Phys. Rev. Lett., 90:118101, 2003.CrossRefGoogle Scholar
  11. [11]
    H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima, and C. Betsholtz. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol., 161:1163–1177, 2003.CrossRefGoogle Scholar
  12. [12]
    S. Gory-Fauré, M.-H Prandini, H. Pointu, V. Roullot, I. Pignot-Paintrand, M. Vernet, and P. Huber. Role of vascular endothelial-cadherin in vascular morphogenesis. Development, 126:2093–2102, 1999.Google Scholar
  13. [13]
    G. Helmlinger, M. Endo, N. Ferrara, L. Hlatky, and R. K. Jain. Growth factors-formation of endothelial cell networks. Nature, 405:139–141, 2000.CrossRefGoogle Scholar
  14. [14]
    N. A. Hotchin, A. Gandarillas, and F. M. Watt. Regulation of cell-surface β-1 integrin levels during keratinocyte terminal differentiation. J. Cell Biol., 128:1209–1219, 1995.CrossRefGoogle Scholar
  15. [15]
    U. B. Jensen, S. Lowell, and F. M. Watt. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development, 126:2409–2418, 1999.Google Scholar
  16. [16]
    Y. Jiang, J. A. Pjesivac-Grbovic, C. Cantrell, and J.P. Freyer. A multiscale model for avascular tumour growth. Biophys. J., 89:3884–3894, 2005.CrossRefGoogle Scholar
  17. [17]
    P. H. Jones, S. Harper, and F. M. Watt. Stem cell patterning and fate in human epidermis. Cell, 80:83–93, 1995.CrossRefGoogle Scholar
  18. [18]
    E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 26:399–415, 1970.CrossRefGoogle Scholar
  19. [19]
    M. A. Knewitz and J. C. M. Mombach. Computer simulation of the influence of cellular adhesion on the morphology of the interface between tissues of proliferating and quiescent cells. Comp. Biol. Med., 36:59–69, 2006.CrossRefGoogle Scholar
  20. [20]
    L. Lamalice, F. Houle, G. Jourdan, and J. Huot. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene, 23:434–445, 2004.CrossRefGoogle Scholar
  21. [21]
    S. Lowell, P. Jones, I. Le Roux, J. Dunne, and F. M. Watt. Stimulation of human epidermal differentiation by Delta-Notch signalling at the boundaries of stem-cell clusters. Curr. biol., 10:491–500, 2000.CrossRefGoogle Scholar
  22. [22]
    S. Lowell and F. M. Watt. Delta regulates keratinocyte spreading and motility independently of differentiation. Mech. Dev., 107:133–140, 2001.CrossRefGoogle Scholar
  23. [23]
    D. Manoussaki, S. R. Lubkin, R. B. Vernon, and J. D. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor., 44:271–282, 1996.CrossRefGoogle Scholar
  24. [24]
    S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain, and J. A. Sherratt. Mathematical modelling of flow through vascular networks: implications for tumourinduced angiogenesis and chemotherapy strategies. B. Math. Biol., 64:673–702, 2002.CrossRefGoogle Scholar
  25. [25]
    R. M. H. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman, and J. A. Glazier. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289(1):44–54, 2006.CrossRefGoogle Scholar
  26. [26]
    R. M. H. Merks and J. A. Glazier. Dynamic mechanisms of blood vessel growth. Nonlinearity, 19:C1–C10, 2006.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    R. M. H. Merks, S. A. Newman, and J. A. Glazier. Cell-oriented modeling of in vitro capillary development. In Peter M.A. Sloot, Bastien Chopard, and Alfons G. Hoekstra, editors, Cellular Automata. 6th international conference on Cellular Automata for Research and Industry, volume 3305 of Lect. Notes Comput. Sc., pages 425–434, Berlin, 2004. Spinger Verlag.Google Scholar
  28. [28]
    R. M. H. Merks, Erica D. Perryn, and James A. Glazier. Contact-inhibited chemotactic motility: Role in de novo and sprouting blood vessel growth. arXiv:q-bio.TO/0505033, 2005.Google Scholar
  29. [29]
    T. M. Moore, G. H. Brough, P. Babal, J. J. Kelly, M. Li, and T. Stevens. Storeoperated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. Am. J. Physiol., 275:L574–L582, 1998.Google Scholar
  30. [30]
    J. D. Murray, D. Manoussaki, S. R. Lubkin, and R. B. Vernon. A mechanical theory of in vitro vascular network formation. In C. D. Little, V. Mironov, and E. Helene Sage, editors, Vascular morphogenesis: in vivo, in vitro, in mente, pages 173–188. Birkhauser, Boston, MA, 1998.Google Scholar
  31. [31]
    P. Namy, J. Ohayon, and P. Tracqui. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol., 227:103–120, 2004.CrossRefMathSciNetGoogle Scholar
  32. [32]
    A. Rangarajan, C. Talora, R. Okuyama, M. Nicolas, C. Mammucari, H. Oh, J. C. Aster, S. Krishna, D. Metzger, P. Chambon, L. Miele, M. Aguet, F. Radtke, and G. P. Dotto. Notch signalling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J., 20:3427–3436, 2001.CrossRefGoogle Scholar
  33. [33]
    J. P. Rieu, A. Upadhyaya, J. A. Glazier, N. B. Ouchi, and Y. Sawada. Diffusion and deformations of single hydra cells in cellular aggregates. Biophys. J., 79:1903–1914, 2000.CrossRefGoogle Scholar
  34. [34]
    W. Riseau. Mechanisms of angiogenesis. Nature, 386:671–674, 1997.CrossRefGoogle Scholar
  35. [35]
    P. A. Rupp, A. Czirók, and C. D. Little. αvβ3 integrin-dependent endothelial cell dynamics in vivo. Development, 131:2887–2897, 2004.CrossRefGoogle Scholar
  36. [36]
    N. J. Savill and P. Hogeweg. Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol., 184:229–235, 1997.CrossRefGoogle Scholar
  37. [37]
    N. J. Savill and J. A. Sherratt. Control of epidermal stem cell clusters by Notchmediated lateral induction. Dev. Biol., 258:141–153, 2003.CrossRefGoogle Scholar
  38. [38]
    G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, and F. Bussolino. Modeling the early stages of vascular network assembly. EMBO J., 22:1771–1779, 2003.CrossRefGoogle Scholar
  39. [39]
    E. L. Stott, N. F. Britton, J. A. Glazier, and M. Zajac. Stochastic simulation of benign avascular tumour growth using the Potts model. Math. Comp. Model., 30:183–198, 1999.CrossRefGoogle Scholar
  40. [40]
    S. Turner and J. A. Sherratt. Intercellular adhesion and cancer invasion: A discrete simulation using the extended Potts model. J. theor. Biol., 216:85–100, 2002.CrossRefMathSciNetGoogle Scholar
  41. [41]
    S. Turner, J. A. Sherratt, and D. Cameron. Tamoxifen treatment failure in cancer and the nonlinear dynamics of TGFβ. J. Theor. Biol., 229:101–111, 2004.CrossRefMathSciNetGoogle Scholar
  42. [42]
    G. M. Walker, J. Sai, A. Richmond, M. Stremler, C. Y. Chung, and J. P. Wikswo. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip, 5:611–618, 2005.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Nicholas J. Savill
    • 1
  • Roeland M. H. Merks
    • 2
    • 3
  1. 1.Centre for Infectious DiseaseUniversity of EdinburghEdinburghScotland
  2. 2.Department of Plant Systems BiologyGhentBelgium
  3. 3.Department of Molecular GeneticsGhent UniversityGhentBelgium

Personalised recommendations