Two-dimensional Multiscale Model of Cell Motion in a Chemotactic Field

  • Mark Alber
  • Nan Chen
  • Tilmann Glimm
  • Pavel Lushnikov
Part of the Mathematics and Biosciences in Interaction book series (MBI)


The Cellular Potts Model (CPM) has been used at a cellular scale for simulating various biological phenomena such as differential adhesion, fruiting body formation of the slime mold Dictyostelium discoideum, angiogenesis, cancer invasion, chondrogenesis in embryonic vertebrate limbs, and many others. Continuous models in the form of partial differential, integral or integro-differential equations are used for studying biological problems at large scale. It is crucial for developing multiscale biological models to establish a connection between discrete microscopic stochastic models, including CPM, and macroscopic continuous models. To demonstrate multiscale approach we derive in this paper continuous limit of a two-dimensional CPM with the chemotactic interactions in the form of a Fokker-Planck equation describing evolution of the cell probability density function. This equation is then reduced to the classical macroscopic Keller-Segel model. We demonstrate that CPM Monte Carlo simulations are in excellent agreement with the numerics for the continuous macroscopic model with different forms of the chemical field term.


Dictyostelium Discoideum Slime Mold Fruit Body Formation Vertebrate Limb Slime Mold Dictyostelium Discoideum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Graner, J.A. Glazier, Simulation of biological cell sorting using a two dimensional extended Potts model, Phys. Rev. Lett. 69 (1992), 2013–2016.CrossRefGoogle Scholar
  2. [2]
    J.A. Glazier, F. Graner, Simulation of the Differential Adhesion Driven Rearrangement of Biological Cells, Phys. Rev. 47 (1993), 2128–2154.CrossRefGoogle Scholar
  3. [3]
    D. Weaire, J.A. Glazier, Relation between Volume, Number of Faces and Three-Dimensional Growth Laws in Coarsening Cellular Patterns Phil. Mag. Lett. 68 (1993), 363–365.CrossRefGoogle Scholar
  4. [4]
    J. Mombach, J.A. Glazier, Single cell motion in aggregates of embryonic cells, Phys. Rev. Lett. 76 (1996), 3032–3035.CrossRefGoogle Scholar
  5. [5]
    M. Alber, T. Hou, J.A. Glazier, Y. Jiang (Eds.), Special Issue on Multiscale Modeling in Biology, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 3(2) 2005.Google Scholar
  6. [6]
    A.F.M. Marée and P. Hogeweg, How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum Proc. Natl. Acad. Sci. U.S.A. 98(7) (2001), 3879–3883.CrossRefGoogle Scholar
  7. [7]
    A.F.M. Marée, From Pattern Formation to Morphogenesis. Ph.D. thesis, Utrecht University, Netherlands (2000).Google Scholar
  8. [8]
    R.M.H. Merks, S.V. Brodsky, M.S. Goligorsky, S.A. Newman, J.A. Glazier, Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling Dev. Biol. 289 (2006), 44–54.CrossRefGoogle Scholar
  9. [9]
    A.F.M. Marée, A. Jilkine, A. Dawes, V. A. Grieneisen, and L. Edelstein-Keshet, P olarization and movement of keratocytes: a multiscale modelling approach Bull. Math. Biol. 68(5) (2006), 1169–1211.CrossRefGoogle Scholar
  10. [10]
    R. Chaturvedi, C. Huang, J.A. Izaguirre, S.A. Newman, J.A. Glazier, M.S. Alber, On Multiscale Approaches to Three-Dimensional Modeling of Morphogenesis J. R. Soc. Interface 2 (2005), 237–253.CrossRefGoogle Scholar
  11. [11]
    T. Cickovski, C. Huang, R. Chaturvedi, T. Glimm, H.G.E. Hentschel, M.S. Alber, J.A. Glazier, S.A. Newman, J.A. Izaguirre, A Framework for Three Dimensional Simulation of Morphogenesis IEEE/ACM Transactions on Computational Biology and Bioinformatics 3 (2005), 1545–1566.Google Scholar
  12. [12]
    N. Chen, J.A. Glazier and M.S. Alber, A Parallel Implementation of the Cellular Potts Model for Simulation of Cell-Based Morphogenesis S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, Springer-Verlag Berlin Heidelberg, (2006) 58–67.Google Scholar
  13. [13]
    N. Chen, J.A. Glazier, J.A. Izaguirre and M.S. Alber, A Parallel Implementation of the Cellular Potts Model for Simulation of Morphogenesis (in press).Google Scholar
  14. [14]
    E.F. Keller and L.A. Segel, Model for Chemotaxis J. Theor. Biol. 30 (1971), 225–234.CrossRefGoogle Scholar
  15. [15]
    W. Alt, Biased random walk models for chemotaxis and related diffusion approximations J. Math Biol. 9 (1980), 147–177.MATHCrossRefGoogle Scholar
  16. [16]
    H.G. Othmer and A. Stevens, Aggregation, Blowup, and Collapse: The ABCs of Taxis in Reinforced Random Walks SIAM J. Appl. Math. 57 No.4 (1997), 1044–1081.MATHCrossRefGoogle Scholar
  17. [17]
    A. Stevens, A stochastic cellular automaton, modeling gliding and aggregation of myxobacteria SIAM J. Appl. Math. 61 (2000), 172–182.MATHCrossRefGoogle Scholar
  18. [18]
    T. J. Newman and R. Grima, Many-body theory of chemotactic cell-cell interactions Phys. Rev. E, 70 (2004), 051916.CrossRefGoogle Scholar
  19. [19] Scholar
  20. [20]
    C.J. Weijer, Visualizing Signals Moving in Cells Science 300 (2003), 96–100.Google Scholar
  21. [21]
    S. Turner, J.A. Sherratt, K.J. Painter, N.J. Savill, From a discrete to a continuous model of biological cell movement Phys. Rev. E, 69 (2004), 021910.CrossRefGoogle Scholar
  22. [22]
    T. J. Newman, Modeling multi-cellular systems using sub-cellular elements Math. Bioscinces and Engeneering 2 (2005), 611–622.Google Scholar
  23. [23]
    D. Dormann, B. Vasiev, and C.J. Weijer, Becoming Multicellular by Aggregation; The Morphogenesis of the Social Amoebae Dicyostelium discoideum J. of Biol. Phys. 28 (2005), 765.CrossRefGoogle Scholar
  24. [24]
    B.N. Vasiev, P. Hogeweg, and A. V. Panfilov, Simulation of Dictyostelium Discoideum Aggregation via Reaction-Diffusion Model Phys. Rev. Lett. 73 (1994), 3173.CrossRefGoogle Scholar
  25. [25]
    M. Alber, N. Chen, T. Glimm and P. Lushnikov, Multiscale dynamics of biological cells with chemotactic interactions: From a discrete stochastic model to a continuous description; Phys. Rev. E. 73 (2006), 051901.CrossRefGoogle Scholar
  26. [26]
    M.A. Kiskowski, M.S. Alber, G.L. Thomas, J.A. Glazier, N. Bronstein, J. Pu, and S.A. Newman, Interplay between activatorCinhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning Dev. Biol. 271 (2004), 372.CrossRefGoogle Scholar
  27. [27]
    C.S. Christley, S.A. Newman, and M. Alber, Agent-Based Model for Developmental Pattern Formation with Multiscale Dynamics and Varying Cell Geometry In: Mathematical Modeling of Biological Systems, Volume I. A. Deutsch, L. Brusch, H. Byrne, G. de Vries and H.-P. Herzel (eds). Birkhuser, Boston, (2007), 155–167.Google Scholar
  28. [28]
    M.S. Alber, M.A. Kiskowski, and Y. Jiang, Two-stage aggregate formation via streams in myxobacteria Phys. Rev. Lett. 93 (2004) 068301.CrossRefGoogle Scholar
  29. [29]
    O. Sozinova, Y. Jiang, D. Kaiser, and M. Alber, A Three-Dimensional Model of Myxobacterial Aggregation by Contact-mediated Interactions Proc. Natl. Acad. Sci. USA, 102 No.32, (2003), 11308–11312.CrossRefGoogle Scholar
  30. [30]
    O. Sozinova, Y. Jiang, D. Kaiser, and M. Alber, A Three-Dimensional Model of Fruiting Body Formation Proc. Natl. Acad. Sci., 103 No.46, (2006), 17255–17259.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Mark Alber
    • 1
  • Nan Chen
    • 1
  • Tilmann Glimm
    • 2
  • Pavel Lushnikov
    • 3
  1. 1.Department of Mathematics, Center of Study of BiocomplexityUniversity of Notre DameNotre DameUSA
  2. 2.Department of MathematicsWestern Washington UniversityBellinghamUSA
  3. 3.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations