Skip to main content

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

The formation of platelet aggregates during blood clotting is modeled on two scales. The microscopic scale models track individual platelets, their mechanical interactions with one another and the surrounding fluid, their detection of and response to chemical activators, and the formation of cohesive and adhesive ‘links’ between platelets and between platelets and the vascular wall. These models allow inclusion of detailed mechanisms of binding-unbinding, platelet stimulus-response, and chemistry on the platelets’ surfaces. The macroscopic scale models treat the same interactions in terms of concentrations of platelets and distributions of cohesive and adhesive links, and can be used to study platelet aggregation in vessels of clinical interest including the coronary and cerebral arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bagchi, P. C. Johnson, and A. S. Popel, Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow, J Biomech Eng, 127 (2005), pp. 1070–80.

    Article  Google Scholar 

  2. D. C. Bottino and L. J. Fauci, A computational model of ameboid deformation and locomotion, Eur. Biophys. J., 27 (1998), pp. 532–539.

    Article  Google Scholar 

  3. R. H. Dillon and L. J. Fauci, An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating, J. Theor. Biol, 207 (2000), pp. 415–430.

    Article  Google Scholar 

  4. R. H. Dillon, L. J. Fauci, A. L. Fogelson, and D. P. Gaver, Modeling biofilm processes using the immersed boundary method, J. Comput. Phys., 129 (1996), pp. 57–73.

    Article  MATH  Google Scholar 

  5. C. D. Eggleton and A. S. Popel, Large deformation of red blood cells ghosts in a simple shear flow, Physics of Fluids, 10 (1998), pp. 1834–1845.

    Article  Google Scholar 

  6. L. J. Fauci and A. L. Fogelson, Truncated Newton methods and the modelling of complex immersed elastic structures, Comm. Pure Appl. Math., 46 (1993), pp. 787–818.

    Article  MathSciNet  Google Scholar 

  7. A. Fogelson, A. Kuharsky, and H. Yu, Computational modeling of blood clotting: Coagulation and three-dimensional platelet aggregation, in Polymer and Cell Dynamics: Multicsale Modeling and Numerical Simulations, Birkhaeuser-Verlag, Basel, 2003.

    Google Scholar 

  8. A. L. Fogelson, A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting, J. Comput. Phys., 56 (1984), pp. 111–134.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. L. Fogelson, Continuum models of platelet aggregation: Formulation and mechanical properties, SIAM JAM, 52 (1992), pp. 1089–1110.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. L. Fogelson, Continuum models of platelet aggregation: Mechanical properties and chemically-induced phase transitions, Contemp. Math., 141 (1993), pp. 279–294.

    Google Scholar 

  11. A. L. Fogelson and R. D. Guy, Platelet-wall interactions in continuum models of platelet aggregation: Formulation and numerical solution, Mathematical Biology and Medicine, 21 (2004), pp. 293–334.

    Article  MATH  Google Scholar 

  12. A. L. Fogelson and J. P. Keener, Immersed interface methods for Neumann and related problems in two and three dimensions, SIAM J. Sci. Comput., 22 (2000), pp. 1630–1654.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. L. Fogelson and N. Tania, Coagulation under flow: The influence of flowmediated transport on the initiation and inhibition of coagulation, Pathophysiology of Haemostasis and Thrombosis, 34 (2005), pp. 91–108.

    Article  Google Scholar 

  14. R. D. Guy, Asymptotic analysis of PTT type closures for network models with variable junction concentrations, J. Non-Newtonian Fluid Mech., 123 (2004), pp. 223–235.

    Article  MATH  Google Scholar 

  15. R. D. Guy and A. L. Fogelson, Probabilistic modeling of platelet aggregation: Effects of activation time and receptor occupancy, Journal of Theoretical Biology, 219 (2002), pp. 33–53.

    MathSciNet  Google Scholar 

  16. R. D. Guy and A. L. Fogelson, Stability of approximate projection methods on cellcentered grids, Journal of Computational Physics, 203 (2005), pp. 517–538.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. D. Guy, A. L. Fogelson, and J. P. Keener, Modeling fibrin gel formation in a shear flow, Mathematical Medicine and Biology, 24 (2007). pp. 111–130.

    Article  MATH  Google Scholar 

  18. D. A. Hammer and S. M. Apte, Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion, Biophysical Journal, 63 (1992), pp. 35–57.

    Article  Google Scholar 

  19. S. Jadhav, C. D. Eggleton, and K. Konstantopoulos, A 3-d computational model predicts that cell deformation affects selectin-mediated leukocyte rolling, Biophysical Journal, 88 (2005), pp. 96–104.

    Article  Google Scholar 

  20. A. L. Kuharsky and A. L. Fogelson, Surface-mediated control of blood coagulation: The role of binding site densities and platelet deposition, Biophysical Journal, 80 (2001), pp. 1050–1074.

    Google Scholar 

  21. R. J. LeVeque and Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), pp. 1019–1044.

    Article  MATH  MathSciNet  Google Scholar 

  22. Z. Li and K. Ito, The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, SIAM, Philadelphia, PA, 2006.

    Google Scholar 

  23. Y. Mori and C. S. Peskin, Implicit second order immersed boundary methods with boundary mass. submitted for publication, 2006.

    Google Scholar 

  24. E. Newren, A. Fogelson, R. Guy, and R. Kirby, Unconditionally stable discretizations of the immersed boundary equations, Journal of Computational Physics, 222 (2007), pp. 702–719

    Article  MATH  MathSciNet  Google Scholar 

  25. C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), pp. 479–517.

    Article  MATH  MathSciNet  Google Scholar 

  26. K. A. Rejniak, H. J. Kliman, and L. J. Fauci, A computational model of the mechanics and growth of the villous trophoblast bilayer, Bull Math Biol, 66 (2004), pp. 199–232.

    Article  MathSciNet  Google Scholar 

  27. N. T. Wang and A. L. Fogelson, Computational methods for continuum models of platelet aggregation, J. Comput. Phys., 151 (1999), pp. 649–675.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Yu, Three Dimensional Computational Modeling and Simulation of Platelet Aggregation on Parallel Computers, PhD thesis, University of Utah, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Fogelson, A.L. (2007). Cell-based Models of Blood Clotting. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (eds) Single-Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8123-3_11

Download citation

Publish with us

Policies and ethics