Skip to main content

Modeling Multicellular Structures Using the Subcellular Element Model

  • Chapter
Single-Cell-Based Models in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

This chapter describes a new method for simulating grid-free multicellular structures, in which the three-dimensional shape of each cell is dynamically adaptive to its local environment. This is achieved by constructing each cell from “subcellular elements.” I describe in detail the underlying mathematical equation of motion for the elements, and the additional algorithms which allow for cell growth and cell division. The model is illustrated with the simple example of a growing three dimensional cluster of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Glazier and F. Graner, Simulation of the Differential Adhesion Driven Rearrangement of Biological Cells Phys. Rev. E 47 (1993), 2128–2154.

    Article  Google Scholar 

  2. E. Palsson and H. G. Othmer, A Model for Individual and Collective Cell Movement in Dictyostelium discoideum Proc. Natl. Acad. Sci. (USA) 97 (2000), 10448–10453.

    Article  Google Scholar 

  3. D. Drasdo, R. Kree, and J. S. McCaskill, Monte Carlo Approach to Tissue-Cell Populations Phys. Rev. E 52 (1995), 6635–6657.

    Article  Google Scholar 

  4. K. A. Rejniak, A Single Cell Approach in Modeling the Dynamics of Tumor Microregions Math. Biosci. Eng. 2 (2005), 643–655.

    MATH  Google Scholar 

  5. T. J. Newman, Modeling Multicellular Systems Using Subcellular Elements Math. Biosci. Eng. 2 (2005), 611–622.

    Google Scholar 

  6. B. Alberts et al, Molecular Biology of the Cell 4th Edition, Garland, New York 2002.

    Google Scholar 

  7. R. E. Keller and M. Danilchik, Regional Expression, Pattern and Timing of Convergence and Extension During Gastrulation of Xenopus laevis Development 103, 193–209.

    Google Scholar 

  8. L. A. Davidson, M. A. R. Koehl, R. Keller, and G. F. Oster, How Do Sea Urchins Invaginate — Using Biomechanics to Distinguish Between Mechanisms of Primary Invagination Development 121 (1995), 2005–2018.

    Google Scholar 

  9. M. E. Gracheva and H. G. Othmer, A Continuum Model of Motility in Amoeboid Cells Bull. Math. Biol. 66 (2004), 167–193.

    Article  Google Scholar 

  10. R. Grima, Ph.D. Thesis Arizona State University (2005).

    Google Scholar 

  11. D. C. Rapaport, The Art of Molecular Dynamics Simulation Cambridge University Press 2004.

    Google Scholar 

  12. N. G. van Kampen, Stochastic Processes in Physics and Chemistry North Holland, Amsterdam 1992.

    Google Scholar 

  13. S. Sandersius and T. J. Newman, in preparation.

    Google Scholar 

  14. Group website: http://phy.asu.edu/biodyn

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Newman, T.J. (2007). Modeling Multicellular Structures Using the Subcellular Element Model. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (eds) Single-Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8123-3_10

Download citation

Publish with us

Policies and ethics