Advertisement

Natural products from plant cell cultures

  • Elizabeth McCoy
  • Sarah E. O’Connor
Part of the Progress in Drug Research book series (PDR, volume 65)

Abstract

Plants produce complex small molecules — natural products — that exhibit anticancer, antimalarial and antimicrobial activity. These molecules play a key role in human medicine. However, plants typically produce these compounds in low quantities, and harvesting plant natural products is frequently expensive, time-consuming and environmentally damaging. Plant cell culture provides a renewable, easily scalable source of plant material. In this chapter we discuss the successes and pitfalls associated with natural product production in plant cell cultures.

Keywords

Hairy Root Cell Suspension Culture Hairy Root Culture Plant Cell Culture Opium Poppy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verpoorte R, van der Heijden R, Ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotech Lett 21: 467–479Google Scholar
  2. 2.
    Verpoorte R, van der Heijden R, Schripsema J, Hoge JHC, Ten Hoopen HJG (1993) Plant cell biotechnology for the production of alkaloids: present status and prospects. J Nat Prod 56: 186–207Google Scholar
  3. 3.
    Rates S (2001) Plants as sources of drugs. Toxicon 39: 603–613PubMedGoogle Scholar
  4. 4.
    Julsing MK, Quax WJ, Kayser O (2007) The engineering of medicinal plants: prospects and limitations of medicinal plant biotechnology. In: O Kayser, W Quax (eds): Medicinal plant biotechnology. Wiley-VCH, Weinheim, 3–8Google Scholar
  5. 5.
    White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9: 585–600PubMedGoogle Scholar
  6. 6.
    Gautheret RJ (1934) Culture du tissues cambial. C R Acad Sci 198: 151–158Google Scholar
  7. 7.
    Heinstein PF (1985) Future approaches to the formation of secondary natural products in plant cell suspension cultures. J Nat Prod 48: 1–9Google Scholar
  8. 8.
    Hughes EH, Shanks JV (2002) Metabolic engineering of plants for alkaloid production. Met Eng 4: 41–48Google Scholar
  9. 9.
    Vazquez-Flota F, de Luca V, Carrillo-Pech M, Canto-Flick A, Miranda-Ham M (2002) Vindoline biosynthesis is transcriptionally blocked in Catharanthus roseus cell suspension cultures. Mol Biotechnol 22: 1–8PubMedGoogle Scholar
  10. 10.
    Briskin DP, Kobayashi H, Lila MA, Gawienowski M (2004) Growth in tissue culture and in vitro production of kavapyrones. In: LA Dyer, ADN Palmer (eds): Piper. A model genus for studies of phytochemistry, ecology and evolution. Kluwer Academic Press, New York, 140–155Google Scholar
  11. 11.
    Fischer R, Stoger E, Schillberg S, Christou P, Twyman, RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7: 152–158PubMedGoogle Scholar
  12. 12.
    Vanisree M, Lee CY, Lo SF, Nalawade MS, Lin CY, Tsay TS (2004) Studies on the production of some important secondary metabolites from plants by plant tissue cultures. Bot Bull Acad Sing 45: 1–22Google Scholar
  13. 13.
    Kreis W (2007) In vitro culturing techniques of medicinal plants. In: O Kayser, W Quax (eds): Medicinal plant biotechnology. Wiley-VCH, Weinheim, 159–185Google Scholar
  14. 14.
    Schlatman JE, Moreno PRH, Selles M, Vinke JL, Ten Hoopen HUG, Verpoorte R, Heijnen JJ (1995) Two stage batch production of ajmalicine by Catharanthus roseus: the link between growth and production stage. Biotechnol Bioeng 47: 53–59Google Scholar
  15. 15.
    Nettleship L, Slaytor M (1974) Adaptation of Peganum harmala callus to alkaloid production. J Exp Bot 25: 1114–1123Google Scholar
  16. 16.
    Eible R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: KM Oksman-Caldentey, WH Barx (eds): Plant biotechnology and transgenic plants. Marcel Dekker, New York, 166Google Scholar
  17. 17.
    Hamill JD, Lidgett AJ (1997) Hairy root cultures: opportunities and key protocols for studies in metabolic engineering. In: PM Doran (ed): Hairy roots: culture and applications. Harwood Academic, Amsterdam, 1–31Google Scholar
  18. 18.
    Tepfer D (1990) Genetic transformations using Agrobacterium rhizogenes. Physiol Plant 79: 140–146Google Scholar
  19. 19.
    Giri A, Narasu, ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18: 1–22PubMedGoogle Scholar
  20. 20.
    Mugnier J (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7: 9–12Google Scholar
  21. 21.
    Aird ELH, Hamill JD, Rhodes MJC (1988) Cytogenetic analysis of hairy root cultures from a number of plant species transformed by Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult 15: 47–57Google Scholar
  22. 22.
    Doran PM (2002) Properties and applications of hairy root cultures. In: KM Oksman-Caldentey, WH Barx (eds): Plant biotechnology and transgenic plants. Marcel Dekker, New York, 143–161Google Scholar
  23. 23.
    Weathers PJ, Cheetham RD, Follansbee E, Teoh T (1994) Artemisinin production by transformed roots of Artemisia annua. Biotechnol Lett 16: 1281–1286Google Scholar
  24. 24.
    Wallaart TE, Pras N, Quax WJ, (1999) Isolation and identification of dihydroartemisinic acid hydroperoxide from Artemisia annua: a novel biosynthetic precursor of artemisinin. J Nat Prod 62: 1160–1162PubMedGoogle Scholar
  25. 25.
    Saito K, Mizukami H (2002) Plant cell cultures as producers of secondary compounds In: KM Oksman-Caldentey, WH Barx (eds): Plant biotechnology and transgenic plants. Marcel Dekker, New York, 77–109Google Scholar
  26. 26.
    Kreis, W (2007) In vitro culturing techniques of medicinal plants In: O Kayser, W Quax (eds): Medicinal plant biotechnology. Wiley-VCH, Weinheim, 173Google Scholar
  27. 27.
    Tulecke W, Nickell LG (1959) Production of large amounts of plant tissue by submerged culture. Science 130: 863–864PubMedGoogle Scholar
  28. 28.
    Noguchi M, Matsumoto T, Hirata Y, Yamamoto K, Katsuyama A, Kato A, Azechi S, Kato K (1977) Improvement pf growth rates of plant cell cultures. In: W Barz, E Reinhard, MH Zenk (eds): Plant tissue culture and its biotechnological application. Springer Verlag, Berlin, 85–94Google Scholar
  29. 29.
    Briskin DP (2007) Biotechnological methods for the selection of high-yielding cell lines and production of secondary metabolites in medicinal plants In: O Kayser, W Quax (eds): Medicinal plant biotechnology. Wiley-VCH, Weinheim, 187–199Google Scholar
  30. 30.
    van Larebeke N, Engler G, Holsters M, van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall inducing ability. Nature 252: 975–976Google Scholar
  31. 31.
    Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263–271PubMedGoogle Scholar
  32. 32.
    Herrera-Estrella L, Depicker A, van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plants using a Ti-plasmid derived vector. Nature 303: 209–213Google Scholar
  33. 33.
    Niu X, Li X, Veronesse P, Bressan RA, Weller SC, Hasegawa PM (2000) Factors affecting Agrobacterium tumefacians transformation of peppermint. Plant Cell Rep 19: 304–310Google Scholar
  34. 34.
    Klein TM, Wolf ED, Wu R, Stanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70–73Google Scholar
  35. 35.
    Twyman RM, Christou P, Stoger E (2002) Genetic transformation of plants and their cells. In: KM Oksman-Caldentey, WH Barx (eds): Plant biotechnology and transgenic plants. Marcel Dekker, New York, 111–141Google Scholar
  36. 36.
    Wilmink A, Dons JJM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep 11: 165–185Google Scholar
  37. 37.
    Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breeding 4: 111–117Google Scholar
  38. 38.
    Holm Y, Hiltunen R (2002) Plant derived drugs and extracts. In: KM Oksman-Caldentey, WH Barx (eds): Plant biotechnology and transgenic plants. Marcel Dekker, New York, 23–44Google Scholar
  39. 39.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifoli. J Am Chem Soc 93: 2325–2327PubMedGoogle Scholar
  40. 40.
    Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by Taxol. Nature 277: 665PubMedGoogle Scholar
  41. 41.
    Rodi DJ, Janes RW, Sanganee HJ, Holton RA, Makowski L (1999) Screening of a library of phage displayed peptides identifies human bcl-2 as a taxol binding protein. J Mol Biol 285: 197–204PubMedGoogle Scholar
  42. 42.
    Rowinsky EK, Cazenave LA, Donehower RC (1990) Taxol: a novel investigational antimicrotuble agent. J Natl Cancer Inst 82: 1247–1259PubMedGoogle Scholar
  43. 43.
    Tabata H (2004) Paclitaxel production by plant cell culture technology. Adv Biochem Engin Biotechnol 7: 1–23Google Scholar
  44. 44.
    Whiterup KM, Look SA, Stasko MW, Ghiorzi TJ, Muschik GM, Cragg GM (1990) Taxus needles contain amounts of taxol comparable to the bark of Taxus brevifolia: analysis and isolation. J Nat Prod 53: 1249Google Scholar
  45. 45.
    Holton RA, Biediger RJ, Boatman PD (1995) Semisynthesis of taxol and taxotere. In: M Suffness (ed): Taxol: science and applications. CRC, Boca Raton, FL, 3–25Google Scholar
  46. 46.
    Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14: 1129–1132PubMedGoogle Scholar
  47. 47.
    Frense D (2007) Taxanes: perspectives for biotechnological production. Appl Microbiol Biotechnol 73: 1233–1240PubMedGoogle Scholar
  48. 48.
    Fett-Neto AG, Dicosmo F, Reynolds WF, Sakata K (1992) Cell culture of Taxus as a source of the antineoplastic drug taxol and related taxanes. Biotechnology 10: 1572–1575PubMedGoogle Scholar
  49. 49.
    Jennewein S, Wildung MR, Chau M, Walker K, Croteau R (2004) Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci 101: 9149–9154PubMedGoogle Scholar
  50. 50.
    Nims E, Dubois CP, Robers SC, Walker EL (2006) Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Met Eng 8: 385–394Google Scholar
  51. 51.
    Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73: 980–990PubMedGoogle Scholar
  52. 52.
    Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260: 214–216PubMedGoogle Scholar
  53. 53.
    Shrestha K, Strobel GA, Shrivastava SP, Gewali MB (2001) Evidence for paclitaxel from three new endophytic fungi of Himalayan yew of Nepal. Planta Med 67: 374–376PubMedGoogle Scholar
  54. 54.
    Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65: 2735–2749PubMedGoogle Scholar
  55. 55.
    Thomas CJ, Rahier NJ, Hecht SM (2004) Camptothecin: current perspectives. Bioorg Med Chem 12: 1585–1604PubMedGoogle Scholar
  56. 56.
    Li QY, Zu YG, Shi RZ, Yao LP (2006) Review camptothecin: current perspectives. Curr Med Chem 13(17): 2021–2039PubMedGoogle Scholar
  57. 57.
    Oberlies NH, Kroll DJ (2004) Camptothecin and taxol: historic achievements in natural products research. J Nat Prod 67: 129–135PubMedGoogle Scholar
  58. 58.
    Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. Isolation and structure of camtothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88: 3888–3890Google Scholar
  59. 59.
    Lopez-Meyer M, Nessler CL, McKnight TD (1994) Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Med 60: 558–560PubMedGoogle Scholar
  60. 60.
    Wani MC, Wall ME (1969) Plant antitumor agents. II. Structure of two new alkaloids from Camptotheca acuminata. J Org Chem 34: 1364–1367Google Scholar
  61. 61.
    Govindachari TR, Viswanathan N (1972) 9-Methoxycamptothecin. New alkaloid from Mappia foetida. Ind J Chem 10: 453–454Google Scholar
  62. 62.
    Wani MC, Ronman PE, Lindley JT, Wall ME (1980) Plant antitumor agents. 18. Synthesis and biological activity of camptothecin analogs. J Med Chem 23: 554–560PubMedGoogle Scholar
  63. 63.
    Hutchinson CR (1981) Camptothecin — chemistry, biogenesis and medicinal chemistry. Tetrahedron 37: 1047–1065Google Scholar
  64. 64.
    Kitajima M, Yoshida S, Yamagata K, Nakamura M, Takayama H, Saito K, Seki H, Aimi N (2002) Camptothecin-related alkaloids from hairy roots of Ophiorrhiza pumila. Tetrahedron 58: 9169–9178Google Scholar
  65. 65.
    Sakato K, Tanaka H, Mukai N, Misawa M (1974) Isolation and identification of camptothecin from cells of Camptotheca acuminata suspension cultures. Agric Biol Chem 38: 217–218Google Scholar
  66. 66.
    Pan XW, Xu HH, Xin L, Gao X, Lu YT (2004) Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnol Lett 26: 1745–1748PubMedGoogle Scholar
  67. 67.
    Bensaddek L, Gillet F, Saucedo JEN and Fliniaux MA (2001) The effect of nitrate and ammonium concentrations on growth and alkaloid accumulation of Atropa belladonna hairy roots. J Biotechnology 85: 35–40Google Scholar
  68. 68.
    Wiedenfeld H, Furmanowa M, Roeder E, Guzewska J, Gustowski W (1997) Camptothecin and 10-hydroxycamptothecin in callus and plantlets of Camptotheca acuminata. Plant Cell Tiss Organ Cult 49: 213–218Google Scholar
  69. 69.
    Roja G, Heble MR (1994) The quinoline alkaloids camptothecin and 9-methoxycamptothecin from tissue cultures and mature trees of Nothapodytes foetida. Phytochemistry 36: 65–66Google Scholar
  70. 70.
    Ciddi V, Shuler ML (2000) Camptothecin from callus cultures of Nothapodytes foetida. Biotechnol Lett 22: 129–132Google Scholar
  71. 71.
    Fulzele DP, Satdive RK, Pol BB (2001) Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Med 67:150–152PubMedGoogle Scholar
  72. 72.
    Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Reports 22: 437–441PubMedGoogle Scholar
  73. 73.
    Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 20: 267–271Google Scholar
  74. 74.
    Lee-Parsons CWT, Shuler ML (2002) The effect of ajmalicine spiking and resin addition timing on the production of indole alkaloids from Catharanthus roseus cell cultures. Biotechnol Bioeng 79: 408–415PubMedGoogle Scholar
  75. 75.
    Sudo H, Yamakawa T, Yamazaki M, Aimi N, Saito K (2002) Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotechnol Lett 24: 359–363Google Scholar
  76. 76.
    Asano T, Watase I, Sudo H, Kitajima M, Takayama H, Aimi N, Yamazaki M, Saito K (2004) Camptothecin production by in vitro cultures of Ophiorrhiza liukiuensis and O. kuroiwai. Plant Biotechnol 21: 275–281Google Scholar
  77. 77.
    Hashimoto T, Yamada Y (1983) Scopolamine production in suspension — cultures and redifferentiated roots of Hyoscyamus niger. Planta Medica 47: 195–199PubMedGoogle Scholar
  78. 78.
    Knopp E, Strauss A, Wehrli W (1988) Root induction on several Solanaceae species by Agrobacterium rhizogenes and the determination of root tropane alkaloid content. Plant Cell Rep 7: 590–593Google Scholar
  79. 79.
    Oksman-Caldenty KM, Arroo R (2000) Regulation of tropane alkaloid metabolism in plants and plant cell cultures. In: R Verpoorte, AW Alfermann (eds): Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers, Netherlands, 253–281Google Scholar
  80. 80.
    Hashimoto T, Kohno J, Yamada Y (1989) 6b-Hydroxyhyoscyamine epoxidase from cultured roots of Hyoscyamus niger. Phytochemistry 28: 1077–1082Google Scholar
  81. 81.
    Yamada Y, Hashimoto T (1989) Substrate specificity of the hyoscyamine 6β-hydroxylase from cultured roots of Hyoscyamus niger. Proc Japan Acad B 65: 156–159Google Scholar
  82. 82.
    Matsuda J, Okabe S, Hashimoto T, Yamada Y (1991) Molecular cloning of hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266: 9460–9464PubMedGoogle Scholar
  83. 83.
    Yun DJ, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal-plants-transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci 89: 11799–11803PubMedGoogle Scholar
  84. 84.
    Zarate R, el Jaber-Vazdekis N, Medina B, Ravelo AG (2006) Tailoring tropane alkaloid accumulation in transgenic hairy roots of Atropa baetica by over-expressing the gene encoding hyoscyamine 6β-hydroxylase. Biotechnology Lett 28: 1271–1277Google Scholar
  85. 85.
    Zhang L, Ding RX, Chai YR, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu TF, Pi Y, Wang ZN, Zhang HM et al (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci 101: 6786–6791PubMedGoogle Scholar
  86. 86.
    Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri TH, Oksman-Caldentey KM (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208: 545–551Google Scholar
  87. 87.
    Kang YM, Lee OS, Jung HY, Kang SM, Lee BH, Karigar C, Prasad T, Bahk JD, Choi MS (2005) Overexpression of hyoscyamine 6β-hydroxylase (h6h) gene and enhanced production of tropane alkaloids in Scopolia parviflora hairy root lines. JMicrobiol Biotechnol 15:91–98Google Scholar
  88. 88.
    Palazon J, Moyano E, Cusido RM, Bonfill M, Oksman-Caldentey KM, Pinol MT (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Science 165: 1289–1295Google Scholar
  89. 89.
    Lee OS, Kang YM, Jung HY, Min JY, Kang SM, Karigar CS, Prasad DT, Bahk JD, Choi MS (2005) Enhanced production of tropane alkaloids in Scopolia parviflora by introducing the PMT (putrescine N-methyltransferase) gene. In Vitro Cellular Dev Biol Plant 41: 167–172Google Scholar
  90. 90.
    Moyano E, Jouhikainen K, Tammela P, Palazon J, Cusido RM, Pinol MT, Teeri TH, Oksman-Caldentey KM (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54: 203–211PubMedGoogle Scholar
  91. 91.
    Rothe G, Hachiya A, Yamada Y, Hashimoto T, Drager B (2003) Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase. J Exp Bot 54: 2065–2070PubMedGoogle Scholar
  92. 92.
    Moyano E, Fornale S, Palazon J, Cusido RM, Bagni N, Pinol MT (2002) Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 59: 697–702PubMedGoogle Scholar
  93. 93.
    Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JAC, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotech 22: 1559–1566Google Scholar
  94. 94.
    Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Ann Rev Plant Physiol Plant Mol Biol 52: 29–66Google Scholar
  95. 95.
    Facchini PJ, Bird DA, Bourgault R, Hagel JM, Liscombe DK, MacLeod BP, Zulak KG (2005) Opium poppy: a model system to investigate alkaloid biosynthesis in plants. Can J Bot 83:1189–1206Google Scholar
  96. 96.
    Unterlinner B, Lenz R, Kutchan TM (1999) Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J 18: 465–475PubMedGoogle Scholar
  97. 97.
    Grothe T, Lenz R, Kutchan TM (2001) Molecular characterization of the salutaridinol 7-O-acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum. J Biol Chem 276: 30717–30723PubMedGoogle Scholar
  98. 98.
    Sato F, Yamada Y (1984) High berberine-producing cultures of Coptis japonica cells. Phytochemistry 23: 281–285Google Scholar
  99. 99.
    Matsubara K, Kitani S, Yoshioka T, Morimoto T, Fujita Y (1989) High-density culture of Coptis japonica cells increases berberine production. J Chem Technol Biotechnol 46: 61–69Google Scholar
  100. 100.
    Eilert U, Kurz WGW, Constabel F (1985) Stimulation of sanguinarine accumulation in Papaver somniferum cell-cultures by fungal elicitors. J Plant Physiol 119: 65–76Google Scholar
  101. 101.
    Lamboursain L, Jolicoeur M (2005) Critical influence of Eschscholzia californica cells nutritional state on secondary metabolite production. Biotechnol Bioeng 91: 827–837PubMedGoogle Scholar
  102. 102.
    Klvana M, Legros R, Jolicoeur M (2005) In situ extraction strategy affects benzophenanthridine alkaloid production fluxes in suspension cultures of Eschscholtzia californica. Biotechnol Bioengineer 89: 280–289Google Scholar
  103. 103.
    Inui T, Tamura K, Fujii N, Morishige T, Sato F (2006) Overexpression of Coptis japonica norcoclaurine 6-O-methyltransferase overcomes the rate-limiting step in benzylisoquinoline alkaloid biosynthesis in E. californica. Plant Cell Physiol 48: 252–262PubMedGoogle Scholar
  104. 104.
    Siah CL, Doran PM (1991) Enhanced codeine and morphine production in suspended Papaver somniferum cultures after removal of exogenous hormones. Plant Cell Rep 10: 349–353Google Scholar
  105. 105.
    Le Flem-Bonhomme V, Laurain-Mattar D, Fliniaux MA (2004) Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A. rhizogenes LBA 9402. Planta 218: 890–893PubMedGoogle Scholar
  106. 106.
    Park SU, Yu M, Facchini PJ (2002) Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of California poppy. Plant Physiol 128: 696–706PubMedGoogle Scholar
  107. 107.
    Park SU, Yu M, Facchini PJ (2003) Modulation of berberine bridge enzyme levels in transgenic root cultures of California poppy alters the accumulation of benzophenanthridine alkaloids. Plant Mol Biol 51: 153–164PubMedGoogle Scholar
  108. 108.
    Fujii N, Inui T, Iwasa K, Morishige T, Sato F (2007) Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in California poppy cells. Transgenic Res 16: 363–375PubMedGoogle Scholar
  109. 109.
    Frick S, Chitty J, Kramell R, Schmidt J, Allen R, Larkin P, Kutchan T (2004) Transformation of opium poppy with antisense berberine bridge enzyme gene via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots. Transgenic Res 13: 607–613PubMedGoogle Scholar
  110. 110.
    Larkin PJ, Miller JAC, Allen RS, Chitty JA, Gerlach WL, Frick S, Kutchan TM, Fist AJ (2007) Increasing morphinan alkaloid production by overexpressing codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol J 5: 26–37PubMedGoogle Scholar
  111. 111.
    Frick S, Kramell R, Kutchan TM (2007) Metabolic engineering with a morphine biosynthetic P450 in opium poppy susrpasses breeding. Met Eng 9: 169–176Google Scholar
  112. 112.
    Zhao Y, Liu C (2007) Biological production of artemisinin for malarial therapy. In: O Kayser, W Quax (eds): Medicinal plant biotechnology. Wiley-VCH, Weinheim, 529–542Google Scholar
  113. 113.
    Wernsdorfer WH (1994) Epidemiology of drug resistance in malaria. Acta Trop 56: 143–156PubMedGoogle Scholar
  114. 114.
    Krishna S, Uhlemann AC, Haynes RK (2004) Artemisinins: mechanisms of action and potential for resistance. Drug Resistance Update 7: 233–244Google Scholar
  115. 115.
    Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P, Zuniga FA, East M, Lee A, Brady L, Haynes RK et al (2005) A single amino acid can determine the sensitivity of the SERCAs to artemisinins. Nat Struct Mol Biol 12: 628–629PubMedGoogle Scholar
  116. 116.
    Weathers PJ, DeJesus-Gonzalez L, Kim YJ, Souret FF, Towler MJ (2004) Alteration of biomass and artemisinin production in Artemisia annua hairy roots by media sterilization method and sugars. Plant Cell Rep 23: 414–418PubMedGoogle Scholar
  117. 117.
    Abdin MZ, Israr M, Rehman RU, Jain SK (2003) Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med 69: 289–299PubMedGoogle Scholar
  118. 118.
    He XC, Zeng MY, Li GF, Liang Z (1983) Callus induction and regeneration of plantlets from Artemisia annua and changes in qinghaosu contents. Acta Bot Sin 25: 87–90Google Scholar
  119. 119.
    Akhila A, Thakur RS Popli SP (1987) Biosynthesis of artemisinin in Artemisia annua. Phytochemistry 16: 1927–1930Google Scholar
  120. 120.
    Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE (2000) Molecular cloning expression and characterization of amorpha-4,11-diene synthase a key enzyme of artemisinin biosynthesis in Artemisia annua. Arch Biochem Biohys 381: 173–180Google Scholar
  121. 121.
    Liu Y, Ye HC, Wang H, Li GF (2003) Molecular cloning, E coli expression and genomic organization of squalene synthase gene from Artemisia annua. Acta Bot Sin 45: 608–613Google Scholar
  122. 122.
    Matsushita Y, Kang WY, Charlwood BV (1996) Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 172: 207–209PubMedGoogle Scholar
  123. 123.
    Martin VJJ, Pitera DJ, Withers ST, Newan JD, Kiesling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotech 21: 796–802Google Scholar
  124. 124.
    Bouwmeester HJ, Wallaart TE, Janssen MHA, Loo B, Jansen BJM, Schmidt MAPCO, Kracker JWD, Konig WA, Franssen MCR (1999) Amorpha-4,11-diene synthase catalyzes the first probable step in artemisinin biosynthesis. Phytochemistry 52: 843–854PubMedGoogle Scholar
  125. 125.
    Yazaki K, Matsuoka H, Ujihara T, Sato, F (1999) Shikonin biosynthesis in Lithospermum erythrorhizon. Light-induced negative regulation of secondary metabolism. Plant Biotechnology 16: 335–342Google Scholar
  126. 126.
    Yoon Y, Kim YO, Lim NY, Jeon WK, Sung HJ (1999) Shikonin an ingredient of Lithospermum erythrorhizon induced apoptosis in HL60 human premyelotic leukemia cell line. Planta Med 65: 532–535PubMedGoogle Scholar
  127. 127.
    Oinuma M, Shimoyama S, Noda, Y (1997) Red colorants their production and cosmetics containing the colorants. Jpn Kokai Tokkyo Koho 8 pp. JP 09296125Google Scholar
  128. 128.
    Tabata M, Mizukami H, Hiraoka N, Konoshima M (1974) Pigment formation in callus cultures of Lithospermum erythrorhizon. Phytochemistry 13: 927–932Google Scholar
  129. 129.
    Fujita Y, Tabata M, Nishi A, Yamada Y (1982) New medium and production of secondary compounds with two staged culture medium. In: A Fujiwara (ed): Plant tissue culture. Maruzen, Tokyo, 399–400Google Scholar
  130. 130.
    Sim SJ, Chang HN (1999) Fed-batch hairy root cultures with in situ separation. Biotechnol Bioprocess Eng 4: 106–111Google Scholar
  131. 131.
    Yazaki K (2001) Root-specific production of secondary metabolites: regulation of shikonin biosynthesis by light in Lithospermum erythrorhizon. Natural Medicines 55: 49–54Google Scholar
  132. 132.
    Okamoto T, Yazaki K, Tabata M (1995) Biosynthesis of shikonin derivatives from Lphenylalanine via deoxyshikonin in Lithospermum cell cultures and cell-free extracts. Phytochemistry 38: 83–88Google Scholar
  133. 133.
    Hartwell JL, Schrecker AW (1951) Components of podophyllin. V. The constitution of podophyllotoxin. J Amer Chem Soc 73: 2909–2916Google Scholar
  134. 134.
    Jardine I (1980) Podophyllotoxins. In: JM Cassady, JD Douros (eds): Anticancer agents based on natural product models. Academic, New York, 319–351Google Scholar
  135. 135.
    Cortese F, Bhattacharyya B, Wolff J (1977) Podophyllotoxin as a probe for the colchicine binding site of tubulin. J Biol Chem 252: 1134–1140PubMedGoogle Scholar
  136. 136.
    Stahelin HF, von Wartburg A (1991) The chemical and biological route from podophyllotoxin glucoside to etoposide. Cancer Res 51: 5–15PubMedGoogle Scholar
  137. 137.
    Canel C, Moraes RM, Dayan FE, Ferreira D (2000) Podophyllotoxin. Phytochemistry 54: 115–120PubMedGoogle Scholar
  138. 138.
    Staehelin H, Von Wartburg A (1989) From podophyllotoxin glucoside to etoposide. Prog Drug Res 33: 169–266Google Scholar
  139. 139.
    Arroo RRJ, Alfermann AW, Medarde M, Peterse M, Pras N, Woolley JG (2002) Plant cell factories as a source for anti-cancer lignans. Phytochem Rev 1: 27–35Google Scholar
  140. 140.
    Sharma TR, Singh BM, Sharma NR, Chauhan RS (2000) Identification of high podophyllotoxin producing biotypes of Podophyllum hexandrum Royle from North-Western Himalaya. J Plant Biochem Biotechnol 9: 49–51Google Scholar
  141. 141.
    Fuss E (2003) Lignans in plant cell and organ cultures: an overview. Phytochem Rev 2: 307–320Google Scholar

Copyright information

© Birkhäuser Verlag, Basel (Switzerland) 2008

Authors and Affiliations

  • Elizabeth McCoy
    • 1
  • Sarah E. O’Connor
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations