Skip to main content

Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation

  • Chapter

Part of the book series: Progress in Drug Research ((PDR,volume 65))

Abstract

Microbes have been good to us. They have given us thousands of valuable products with novel structures and activities. In nature, they only produce tiny amounts of these secondary metabolic products as a matter of survival. Thus, these metabolites are not overproduced in nature, but they must be overproduced in the pharmaceutical industry. Genetic manipulations are used in industry to obtain strains that produce hundreds or thousands of times more than that produced by the originally isolated strain. These strain improvement programs traditionally employ mutagenesis followed by screening or selection; this is known as ‘brute-force’ technology. Today, they are supplemented by modern strategic technologies developed via advances in molecular biology, recombinant DNA technology, and genetics. The progress in strain improvement has increased fermentation productivity and decreased costs tremendously. These genetic programs also serve other goals such as the elimination of undesirable products or analogs, discovery of new antibiotics, and deciphering of biosynthetic pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parekh S (2000) Strain improvement. In: J Lederberg (ed): Encyclopedia of microbiology, vol. 4, 2nd ed. Academic Press, San Diego, 428–443

    Google Scholar 

  2. Vinci VA, Byng G (1999) Strain improvement by nonrecombinant methods. In: AL Demain, JE Davies (eds): Manual of industrial microbiology and biotechnology, 2nd ed. ASM Press, Washington, DC, 103–113

    Google Scholar 

  3. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54: 287–301

    PubMed  CAS  Google Scholar 

  4. Simpson IN, Caten CE (1979) Induced quantitative variation for penicillin titre in clonal populations of Aspergillus nidulans. J Gen Microbiol 110: 1–12

    PubMed  CAS  Google Scholar 

  5. Baltz RH (1986) Mutagenesis in Streptomyces. In: AL Demain, NA Solomon (eds): Manual of industrial microbiology and biotechnology. ASM, Washington, DC, 184–190

    Google Scholar 

  6. Baltz RH (1995) Gene expression in recombinant Streptomyces. In: A Smith (ed): Gene expression in recombinant microorganisms. Marcel Dekker, New York, 309–381

    Google Scholar 

  7. Baltz RH (1998) Genetic manipulation of antibiotic producing Streptomyces. Trends Microbiol 6: 76–83

    PubMed  CAS  Google Scholar 

  8. Baltz RH (1999) Mutagenesis. In: MC Flickinger, SW Drew (eds): Encyclopedia ofbioprocessing technology: fermentation, biocatalysis, and separation. Wiley, New York, 1819–1822

    Google Scholar 

  9. Keller U (1983) Highly efficient mutagenesis of Claviceps purpurea by using protoplasts. Appl Environ Microbiol 46: 580–584

    PubMed  Google Scholar 

  10. Takebe H, Imai S, Ogawa H, Satoh A, Tanaka H (1989) Breeding of bialaphos producing strains from a biochemical engineering viewpoint. J Ferm Bioeng 67: 226–232

    CAS  Google Scholar 

  11. Kim KS, Cho NY, Pai HS, Ryu DDY (1983) Mutagenesis of Micromonospora rosaria by using protoplasts and mycelial fragments. Appl Environ Microbiol 46: 689–693

    PubMed  CAS  Google Scholar 

  12. Kurzatkowski W, Kurylowicz W, Solecka J, Penyige A (1986) Improvement of Streptomyces strains by the regeneration of protoplasts. In: G Szabo, S Biro, M Goodfellow (eds): Biological, biochemical and biomedical aspects of actinomycetes. Part A. Academiai Kiado, Budapest, 289–292

    Google Scholar 

  13. Strohl WR (2001) Biochemical engineering of natural product biosynthesis pathways. Metab Eng 3: 4–14

    PubMed  CAS  Google Scholar 

  14. Hersbach GJM, van der Beck CP, van Dijck PWM(1984) The penicillins: properties, biosynthesis, and fermentation. In: EJ Vandamme (ed): Biotechnology of industrial antibiotics. Marcel Dekker, New York, 45–140

    Google Scholar 

  15. Smith DJ, Bull JH, Edwards J, Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet 216: 492–497

    PubMed  CAS  Google Scholar 

  16. Barredo JL, Diez B, Alvarez E, Martin JF (1989) Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of P. chrysogenum. Curr Genet 16: 453–459

    PubMed  CAS  Google Scholar 

  17. Smith DJ, Burnham MKR, Bull JH, Hodgson JE, Ward JM, Browne P, Brown J, Barton B, Earl AJ, Turner G (1990) β-Lactam antibiotic biosynthesis genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J 9: 741–747

    PubMed  CAS  Google Scholar 

  18. Fierro F, Barredo JL, Diez B, Gutierrez S, Fernandez FJ, Martin JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92: 6200–6204

    PubMed  CAS  Google Scholar 

  19. Podojil M, Blumauerova M, Culik K, Vanek Z (1984) The tetracycyclines: properties, biosynthesis and fermentation. In: EJ Vandamme (ed): Biotechnology of industrial antibiotics. Marcel Dekker, New York, 259–279

    Google Scholar 

  20. Demain AL, Elander RP (1999) The β-lactam antibiotics: past, present, and future. Ant v Leeuwenhoek 75: 5–19

    CAS  Google Scholar 

  21. Chen W-Q, Yu ZN, Zheng Y-H (2004) Expression of Vitreoscilla hemoglobin gene in Streptomyces fradiae and its effect on cell growth and synthesis of tylosin. Chin J Antibiot 29: 516–520

    CAS  Google Scholar 

  22. Liu C-M (1982) Microbial aspects of polyether antibiotics: activity, production and biosynthesis. In: JW Westley (ed): Polyether antibiotics. Naturally occurring acid ionophores. Vol. 1. Biology. Marcel Dekker, New York, 43–102

    Google Scholar 

  23. Blumauerova M, Pokorny V, Stastna J, Hostalek Z, Vanek Z (1978) Developmental mutants of Streptomyces coeruleorubidis, a producer of anthracyclines: isolation and preliminary characterization. Folia Microbiol 23: 177–182

    CAS  Google Scholar 

  24. Blumaerova M, Podojil M, Gauze G., Maksikmova TS, Panos J, Vanek Z (1980) Spontaneous variability of Streptomyces glomeratus, a producer of anthracycline antibiotics beromycins. Folia Microbiol 25: 207–212

    Google Scholar 

  25. Blumaerova M, Podojil M, Gauze GF, Maksikmova TS, Panos J, Vanek Z (1980) Effect of cultivation conditions on the activity of the beromycin producer Streptomyces glomeratus 3980 and its spontaneous variants. Folia Microbiol 25: 213–218

    Google Scholar 

  26. Lee JC, Park HR, Park DJ, Son KH, Yoon KH, Kim YB, Kim CJ (2003) Production of teicoplanin by a mutant of Actinoplanes teicomyceticus. Biotechnol Lett 25: 537–540

    PubMed  CAS  Google Scholar 

  27. Haavik HI, Froyshov O (1982) On the role of L-leucine in the control of bacitracin formation by Bacillus licheniformis. In: H Kleinkauf, H von Doehren (eds): Peptide antibiotics: biosynthesis and functions. Walter de Gruyter, Berlin, 155–159

    Google Scholar 

  28. Godfrey O (1973) Isolation of regulatory mutants of the aspartic and pyruvic acid families and their effect on antibiotic production in Streptomyces lipmanii. Antimicrob Agents Chemother 4: 73–79

    PubMed  CAS  Google Scholar 

  29. Lee SH, Lee KJ (1995) Threonine dehydratases in different strains of Streptomyces fradiae. J Biotechnol 43: 95–102

    PubMed  CAS  Google Scholar 

  30. Polsinelli M, Albertini A, Cassani G, Ciferri O (1965) Relation of biochemical mutations to actinomycin synthesis in Streptomyces antibioticus. J Gen Microbiol 39: 239–246

    PubMed  CAS  Google Scholar 

  31. Saburova TP, Lapchinskaya OA, Sinyagina OP, Trutneva EM, Lvova NA (1977) Auxotrophic mutants in selection of Actinomyces coeruleorubidus, an organism producing rubomycin. Antibiotiki 22: 1095–1100

    PubMed  CAS  Google Scholar 

  32. Dulaney EL, Dulaney DD (1967) Mutant populations of Streptomyces viridifaciens. Trans NY Acad Sci II 29: 782–799

    CAS  Google Scholar 

  33. Unowsky J, Hoppe DC (1978) Increased production of the antibiotic aurodox (X-5108) by aurodox-resistant mutants. J Antibiot 31: 662–666

    PubMed  CAS  Google Scholar 

  34. Mendelovitz S, Aharonowitz Y (1983) β-Lactam antibiotic production by Streptomyces clavuligerus mutants impaired in regulation of aspartokinase. J Gen Microbiol 129: 2063–2069

    PubMed  CAS  Google Scholar 

  35. Smith A (1987) Enzyme regulation of desferrioxamine biosynthesis: a basis for a rational approach to process development. In: M Alacevic, D Hranueli, Z Toman (eds): Fifth International Symposium on the Genetics of Industrial Microorganisms 1986. Pliva, Zagreb, 513–527

    Google Scholar 

  36. Pospisil S, Kopecky J, Prikrylova V, Spizek J (1999) Overproduction of 2-ketoisovalerate and monensin production by regulatory mutants of Streptomyces cinnamonensis resistant to 2-ketobutyrate and amino acids. FEMS Microbiol Lett 172: 197–204

    CAS  Google Scholar 

  37. Wang MR, Ding H, Hu YJ (1996) The action of arginine and valine in the biosynthesis of teicoplanin. Chin J Antibiot 21 (Suppl): 77–80

    CAS  Google Scholar 

  38. Jin ZH, Wang MR, Cen PL (2002a) Production of teichoplanin by valine-analogue resistant mutant strains of Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 58: 63–66

    PubMed  CAS  Google Scholar 

  39. Barrios-Gonzalez J, Montenegro E, Martin JF (1993) Penicillin production by mutants resistant to phenylacetic acid. J Ferm Bioeng 7: 455–458

    Google Scholar 

  40. Jin ZH, Lin JP, Xu ZN, Cen PL (2002b) Improvement of industry-applied rifamycin Bproducing strain, Amycolatopsis mediterranei, by rational screening. J Gen Appl Microbiol 48: 329–334

    PubMed  CAS  Google Scholar 

  41. Elander RP, Aoki H (1982) β-Lactam producing microorganisms — their biology and fermentation behavior. In: RB Morin, M Gorman (eds): Chemistry and biology of β-lactam antibiotics, vol. 3. Academic Press, New York, 83–153

    Google Scholar 

  42. Higashide E (1984) The macrolides; properties, biosynthesis, and fermentation. In: EJ Vandamme (ed): Biotechnology of industrial antibiotics. Marcel Dekker, New York, 451–509

    Google Scholar 

  43. Gravius B, Glocker D, Pigac J, Pandza K, Hranueli D, Cullum J (1994) The 387 kb linear plasmid pPZG101 of Streptomyces rimosus and its interactions with the chromosome. Microbiology 140: 2271–2277

    PubMed  CAS  Google Scholar 

  44. Crameri R, Davies JE (1986) Increased production of aminoglycosides associated with amplified antibiotic resistance genes. J Antibiot 39: 128–135

    PubMed  CAS  Google Scholar 

  45. Hosoya Y, Okamoto S, Muramatsu H, Ochi K (1998) Acquisition of certain streptomycin resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 42: 2041–2047

    PubMed  CAS  Google Scholar 

  46. Hesketh A, Ochi K (1997) A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12) mutations conferring resistance to streptomycin. J Antibiot 50: 532–535

    PubMed  CAS  Google Scholar 

  47. Okamoto S, Lezhava A, Hosaka T, Okamoto-Hosoya Y, Ochi K (2003) Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J Bacteriol 185: 601–609

    PubMed  CAS  Google Scholar 

  48. Okamoto-Hosoya Y, Sato T, Ochi K (2000) Resistance to paromomycin is conferred by rpsL mutations, accompanied by an enhanced antibiotic production in Streptomyces coelicolor A3(2). J Antibiot 53: 1424–1427

    PubMed  CAS  Google Scholar 

  49. Hu H, Ochi K (2001) Novel approach for improving the production of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol 67: 1885–1892

    PubMed  CAS  Google Scholar 

  50. Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K (2003) Innovative approach for improvement of an antibiotic-overproducing industrial strain of Strepromyces albus. Appl Environ Microbiol 69: 6412–6417

    PubMed  CAS  Google Scholar 

  51. Chang LT, McGrory EL, Elander RP (1980) Penicillin production by glucose-derepressed mutants of Penicillium chrysogenum. J Indust Microbiol 6: 165–169

    Google Scholar 

  52. Colombo AL, Crespi-Pevellino N, Grein A, Minghetti A, Spalla CJ (1981) Metabolic and genetic aspects of the relationship between growth and tetracycline production in Streptomyces aureofaciens. Biotechnol Lett 3: 71–76

    CAS  Google Scholar 

  53. Martin JF, Naharro G, Liras P, Villanueva JR (1979) Isolation of mutants deregulated in phosphate control of candicidin biosynthesis. J Antibiot 32: 600–606

    PubMed  CAS  Google Scholar 

  54. Elander RP (1969) Applications of microbial genetics to industrial fermentations. In: D Perlman (ed): Fermentation Advances. Academic Press, New York, 89–114

    Google Scholar 

  55. Katagiri I (1954) Study on chlortetracycline. Improvement of chlortetracycline-producing strain by several kinds of methods. J Antibiot 7: 45–52

    PubMed  CAS  Google Scholar 

  56. Bannerjee AB, Bose SK (1964) A rapid method for isolating mutants of Bacillus subtilis producing increased or decreased amounts of the antibiotic, mycobacillin. J Appl Bacteriol 27: 93–95

    Google Scholar 

  57. Ditchburn P, Giddings B, MacDonald KD (1974) Rapid screening for the isolation of mutants of Aspergillus nidulans with increased penicillin yields. J Appl Bacteriol 37: 515–523

    PubMed  CAS  Google Scholar 

  58. Ichikawa T, Date M, Ishikura T, Ozaki A (1971) Improvement of kasugamycin-producing strain by agar piece method and the prototroph method. Folia Microbiol 16: 218–224

    CAS  Google Scholar 

  59. Chang LT, Elander RP (1979) Rational selection for improved cephalosporin C productivity in strains of Acremonium chrysogenum. Devel Indust Microbiol 20: 367–379

    Google Scholar 

  60. Gesheva V (1994) Isolation of spontaneous Streptomyces hygroscopicus 111–81 phosphate-deregulated mutants hyperproducing its antibiotic complex. Biotechnol Lett 16: 443–448

    CAS  Google Scholar 

  61. Nakatsukasa WM, Mabe JA (1978) Galactose induced colonial dissociation in Streptomyces aureofaciens. J Antibiot 31: 805–808

    PubMed  CAS  Google Scholar 

  62. Kitano K, Nozaki Y, Imada A (1985) Selective accumulation of unsulfated carbapenem antibiotics by sulfate transport-negative mutants of Streptomyces griseus subsp. cryophilus C-19393. Agric Biol Chem 49: 677–684

    CAS  Google Scholar 

  63. Omura S, Ikeda H, Tanaka H (1991) Selective production of specific components of avermectins in Streptomyces avermitilis. J Antibiot 44: 560–563

    PubMed  CAS  Google Scholar 

  64. Stutzman-Engwall K, Conlon S, Fedechko R, Kaczmarek F, McArthur H, Krebber A, Chen Y, Minshull J, Raillard SA, Gustafsson C (2003). Engineering the aveC gene to enhance the ratio of doramectin to its CHC-B2 analogue produced in Streptomyces avermitilis. Biotechnol Bioeng 82: 359–369

    PubMed  CAS  Google Scholar 

  65. del Cardayre SB (2003) Delivering industrial microorganisms through gene, pathway, and genome shuffling. Abstr S75, SIM Ann Mtg Prog & Abstr 73

    Google Scholar 

  66. Vinci VA, Hoerner TD, Coffman AD, Schimmel TG, Dabora RL, Kirpekar AC, Ruby CL, Stieber RW (1991) Mutants of a lovastatin-hyperproducing Aspergillus terreus deficient in the production of sulochrin. J Indust Microbiol 8: 113–120

    CAS  Google Scholar 

  67. Pospisil S, Peterkova M, Krumphanzl V, Vanek Z (1984) Regulatory mutants of Streptomyces cinnamonensis producing monensin A. FEMS Microbiol Lett 24: 209–213

    CAS  Google Scholar 

  68. Shier WT, Rinehart KL Jr, Gottlieb D (1969) Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proc Natl Acad Sci USA 63: 198–204

    PubMed  CAS  Google Scholar 

  69. Nagaoka K, Demain AL (1975) Mutational biosynthesis of a new antibiotic, streptomutin A, by an idiotroph of Streptomyces griseus. J Antibiot 28: 627–635

    PubMed  CAS  Google Scholar 

  70. Lemke JR, Demain AL (1976) Preliminary studies on streptomutin A. Eur J Appl Microbiol 2: 91–94

    CAS  Google Scholar 

  71. Daum SJ, Lemke JR (1979) Mutational biosynthesis of new antibiotics. Ann Rev Microbiol 33: 241–265

    CAS  Google Scholar 

  72. Kitamura S, Kase H, Odakura Y, Iida T, Shirahata K, Nakayama K (1982) 2-Hydroxysagamicin: A new antibiotic produced by mutational biosynthesis of Micromonospora sagamiensis. J Antibiot 35: 94–97

    PubMed  CAS  Google Scholar 

  73. Cropp TA, Wilson DJ, Reynolds KA (2000) Identification of a cyclohexylcarbonyl CoA biosynthetic gene cluster and application in the production of doramectin. Nature Biotechnol 18: 980–983

    CAS  Google Scholar 

  74. McGuire J, Thomas MC, Pandey RC, Toussaint M, White RJ (1981) Biosynthesis of daunorubicin glycosides: analysis with blocked mutants. In: M Moo-Young (ed): Advances in biotechnology. Vol. III. Fermentation products. Pergammon Press, New York, 117–122

    Google Scholar 

  75. Cassinelli G, Di Matteo F, Forenza S, Ripamonti M, Rivola G, Arcamone F, Di Marco A, Cassaza AM, Soranzo C, Pratesi G (1980) New anthracycline glycosides from Micromonospora. II. Isolation, characterization and biological properties. J Antibiot 33: 1468–1473

    PubMed  CAS  Google Scholar 

  76. Yoshimoto A, Matsuzawa Y, Matsuhashi Y, Oki T, Takeuchi T, Umezawa H (1981) Trisarubicinol, new antitumor anthracycline antibiotic. J Antibiot 34: 1492–1494

    PubMed  CAS  Google Scholar 

  77. Kirst HA, Wild GM, Baltz RH, Seno ET, Hamill RL, Paschal JW, Dorman DE (1983) Elucidation of structure of novel macrolide antibiotics produced by mutant strains of Streptomyces fradiae. J Antibiot 36: 376–382

    PubMed  CAS  Google Scholar 

  78. Spagnoli R, Cappalletti L, Toscano L (1983) Biological conversion of erythronolide B, an intermediate of erythromycin biogenesis, into new ‘hybrid’ macrolide antibiotics. J Antibiot 36: 365–375

    PubMed  CAS  Google Scholar 

  79. Lee BK, Puar MS, Patel M, Bartner P, Lotvin J, Munayyer H, Waitz JA (1983) Multistep bioconversion of 20-deoxo-20-dihydro-12, 13-deepoxy-12,13-dehydrorosaranolide to 22-hydroxy-23-o-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxy-rosaramicin. J Antibiot 36: 742–743

    PubMed  CAS  Google Scholar 

  80. McCormick JRD (1965) Biosynthesis of the tetracyclines. In: Z Vanek, Z Hostalek (eds): Biogenesis of antibiotic substances. Publishing House of the Czechoslovak Academy of Science, Prague, 73–91

    Google Scholar 

  81. Kominek LA (1972) Biosynthesis of novobiocin by Streptomyces niveus. Antimicrob Agents Chemother 1: 123–134

    PubMed  CAS  Google Scholar 

  82. Martin JR, Perun TJ, Girolami RL (1966) Studies on the biosynthesis of erythromycins. I. Isolation of an intermediate glycoside, 3-alpha-L-mycarosylerythronolide B. Biochemistry 5: 2852–2856

    PubMed  CAS  Google Scholar 

  83. Martin JR, Rosenbrook WR (1967) Studies on the biosynthesis of erythromycins. II. Isolation and structure of a biosynthetic intermediate, 6-deoxyerythronolide B. Biochemistry 6: 435–440

    PubMed  CAS  Google Scholar 

  84. Pearce CJ, Akhtar M, Barnett JEG, Mercier D, Sepulchre AM, Gero S (1978) Sub-unit assembly in the biosynthesis of neomycin. The synthesis of 5-O-β-D-ribofuranosyl and 4-O-β-D-ribofuranosyl-2,6-dideoxystreptamines. J Antibiot 31: 74–81

    PubMed  CAS  Google Scholar 

  85. Baltz RH, Seno ET, Stonesifer J, Wild GM (1983) Biosynthesis of the macrolide antibiotic tylosin: a preferred pathway from tylactone to tylosin. J Antibiot 36: 131–141

    PubMed  CAS  Google Scholar 

  86. Takeda K, Aihara K, Furumai T, Ito Y (1978) An approach to the biosynthetic pathway of butirosins and the related antibiotics. J Antibiot 31: 250–253

    PubMed  CAS  Google Scholar 

  87. Fujiwara T, Takahashi Y, Matsumoto K, Kondo E (1980) Isolation of an intermediate of 2-deoxystreptamine biosynthesis from a mutant of Bacillus circulans. J Antibiot 33: 824–829

    PubMed  CAS  Google Scholar 

  88. Kase H, Odakura Y, Nakayama K (1982) Sagamycin and the related aminoglycosider: fermentation and biosynthesis. I. Biosynthetic studies with the blocked mutants of Micromonospora sagamiensis. J Antibiot 35: 1–9

    PubMed  CAS  Google Scholar 

  89. Hanssen R, Kirby R (1983) The induction by N-methyl-N’-nitro-nitrosoguanidine of multiple closely linked mutations in Streptomyces bikiniensis ISP5235 affecting streptomycin resistance and streptomycin biosynthesis. FEMS Microbiol Lett 17: 317–320

    CAS  Google Scholar 

  90. Penzikova GA, Levitov MM (1970) A study on transamidinase activity with respect to streptomycin biosynthesis. Biologiya 39: 337–342

    CAS  Google Scholar 

  91. Vaughn RV, Lotvin J, Puar MS, Patel M, Kershner A, Kalyanpur MG, Marquez J, Waitz JA (1982) Isolation and characterization of two 16-membered lactones: 20-deoxorosaramicin and 20-deoxo-12,13-desepoxy-12,13-dehydrorosaramicin aglycones, from a mutant strain of Micromonospora rosaria. J Antibiot 35: 251–253

    Google Scholar 

  92. Motamedi H, Wendt-Pientowski E, Hutchinson CR (1986) Isolation of tetracenomycin C non-producing Streptomyces glaucescens mutants. J Bacteriol 167: 575–580

    PubMed  CAS  Google Scholar 

  93. Yue S, Motamedi H, Wendt-Pienskowski E, Hutchinson CR (1986) Anthracycline metabolites of tetracenomycin-non-producing Streptomyces glaucescens. J Bacteriol 167: 581–586

    PubMed  CAS  Google Scholar 

  94. Troost T, Katz E (1979) Phenoxazinone biosynthesis: accumulation of a precursor, 4-methyl-3-hydroxyanthranilic acid, by mutants of Streptomyces parvulus. J Gen Microbiol 1: 121–132

    Google Scholar 

  95. Nozaki Y, Kitano K, Imada I (1984) Blocked mutants in the biosynthesis of carbapenem antibiotics from Streptomyces griseus subsp. cryophilus. AgricBiol Chem 48: 37–44

    CAS  Google Scholar 

  96. Kojima I, Fukagawa Y, Okabe M, Ishikura T, Shibamoto N (1988) Mutagenesis of OA-6129 carbapenem-producing blocked mutants and the biosynthesis of carbapenems. J Antibiot 41: 899–907

    PubMed  CAS  Google Scholar 

  97. Kibby JJ, McDonald IA, Rickards RW (1980) 3-Amino-5-hydroxybenzoic acid as a key intermediate in ansamycin and maytansinoid biosynthesis. J Chem Soc Chem Comm 768–769

    Google Scholar 

  98. Ghisalba O, Fuhrer H, Richter W, Moss S (1981) A genetic approach to the biosynthesis of the rifamycin-chromophore in Nocardia mediterranei. III. Isolation and identification of an early ansamycin-precursor containing the seven-carbon amino starter-unit and three initial acetate/propionate-units of the ansa chain. J Antibiot 34: 58–63

    PubMed  CAS  Google Scholar 

  99. Gaucher GM, Lam KS, Grootwassink JWD, Neway J, Deo YM (1981) The initiation and longevity of patulin biosynthesis. Devel Indust Microbiol 22: 219–232

    CAS  Google Scholar 

  100. Byng GS, Eustice DC, Jensen RA (1979) Biosynthesis of phenazine pigments in mutant and wild-type cultures of Pseudomonas aeruginosa. J Bacteriol 138: 846–852

    PubMed  CAS  Google Scholar 

  101. Jarai M (1961) Genetic recombination in Streptomyces aureofaciens. Acta Microbiol Acad Sci Hung 8: 73–79

    PubMed  CAS  Google Scholar 

  102. Mindlin SZ (1969) Genetic recombination in the actinomycete breeding. In: G Sermonti, M Alacevic (eds): Genetics and breeding of Streptomyces. Yugoslav Academy of Sciences and Arts, Zagreb, 147–159

    Google Scholar 

  103. Kieser HM, Kieser T, Hopwood DA (1992) A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol 174: 5496–5507

    PubMed  CAS  Google Scholar 

  104. Ryu DDY, Kim KS, Cho NY, Pai HS (1983) Genetic recombination in Micromonospora rosaria by protoplast fusion. Appl Environ Microbiol 45: 1854–1858

    PubMed  CAS  Google Scholar 

  105. Choi KP, Kim KH, Kim JW (1997) Strain improvement of clavulanic acid producing Streptomyces clavuligerus. Abstr. 12P9, 10th Internat Symp Biol Actinomycetes (Beijing)

    Google Scholar 

  106. Hamlyn PF, Ball C (1979) Recombination studies with Cephalosporium acremonium. In: OK Sebek, AI Laskin (eds): Genetics of industrial microorganisms. ASM, Washington, DC, 185–191

    Google Scholar 

  107. Lein J (1986) The Panlabs penicillin strain improvement program. In: Z Vanek, Z Hostalek (eds): Overproduction ofmicrobial metabolites; strain improvement and process control strategies. Butterworth Publishers, Boston, 105–139

    Google Scholar 

  108. Wesseling AC, Lago B (1981) Strain improvement by genetic recombination of cephamycin producers, Nocardia lactamdurans and Streptomyces griseus. Devel Indust Microbiol 22: 641–651

    Google Scholar 

  109. Yamashita F, Hotta K, Kurasawa S, Okami Y, Umezawa H (1982) Antibiotic formation by interspecific protoplast fusion in streptomycetes and emergence of drug resistance by protoplast regeneration. Abstr P-II-20, 4th Internatl Symp Genet Indust Microorgs, (Kyoto): 108

    Google Scholar 

  110. Traxler P, Schupp T, Wehrli W (1982) 16,17-dihydrorifamycin S and 16,17-dihydro-17-hydroxyrifamycin S, two novel rifamycins from a recombinant strain C5/42 of Nocardia mediterranei. J Antibiot 35: 594–601

    PubMed  CAS  Google Scholar 

  111. Hopwood DA (1983) Actinomycete genetics and antibiotic production. In: LC Vining (ed): Biochemistry and genetic regulation of commercially important antibiotics. Addison Wesley, Reading, MA, 1–23

    Google Scholar 

  112. Okanishi M, Suzuki N, Furuta T (1996) Variety of hybrid characters among recombinants obtained by interspecific protoplast fusion in streptomycetes. Biosci Biotechnol Biochem 60:1233–1238

    CAS  Google Scholar 

  113. Hershberger CL (1996) Metabolic engineering of polyketide biosynthesis. Curr Opin Biotechnol 7: 560–562

    PubMed  CAS  Google Scholar 

  114. Gomi S, Ikeda D, Nakamura H, Naganawa H, Yamashita F, Hotta K, Kondo S, Okami Y, Umezawa H, Iitaka Y (1984) Isolation and structure of a new antibiotic, indolizomycin, produced by a strain SK2-52 obtained by interspecies fusion treatment. J Antibiot 37: 1491–1494

    PubMed  CAS  Google Scholar 

  115. Kinashi H, Shimaji M (1987) Detection of giant linear plasmids in antibiotic producing strains of Streptomyces by the OFAGE technique. J Antibiot 40: 913–916

    PubMed  CAS  Google Scholar 

  116. Binnie C, Warren M, Butler MJ (1989) Cloning and heterologous expression in Streptomyces lividans of Streptomyces rimosus genes involved in oxytetracycline biosynthesis. J Bacteriol 171: 887–895

    PubMed  CAS  Google Scholar 

  117. Butler MJ, Friend EJ, Hunter IS, Kaczmarek FS, Sugden DA, Warren M (1989) Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of oxytetracycline by Streptomyces rimosus. Molec Gen Genet 215: 231–238

    PubMed  CAS  Google Scholar 

  118. Arisawa A, Kawamura N, Narita T, Kojima I, Okamura K, Tsunekawa H, Yoshioka T, Okamoto R (1996) Direct fermentative production of acyltylosins by genetically-engineered strains of Streptomyces fradiae. J Antibiot 49: 349–354

    PubMed  CAS  Google Scholar 

  119. McDougall S, Neilands JB (1984) Plasmid-and chromosome-coded aerobactin synthesis in enteric bacteria: insertion sequences flank operon in plasmid-mediated systems. J Bacteriol 159: 300–305

    PubMed  CAS  Google Scholar 

  120. Roberts M, Leavitt RW, Carbonetti NH, Ford S, Cooper RA, Williams PH (1986) RNA-DNA hybridization analysis of transcription of the plasmid ColV-K30 aerobactin gene cluster. J Bacteriol 167: 467–472

    PubMed  CAS  Google Scholar 

  121. Moon YH, Tanabe T, Funahashi T, Shiuchi K, Nakao H, Yamamoto S (2004) Identification and characterization of two contiguous operons required for aerobactin transport and biosynthesis in Vibrio mimicus. Microbiol Immunol 48: 389–398

    PubMed  CAS  Google Scholar 

  122. Perez-Diaz JC, Clowes RC (1980) Physical characterization of plasmids determining synthesis of a microcin which inhibits methionine synthesis in Escherichia coli. J Bacteriol 141:1015–1023

    PubMed  CAS  Google Scholar 

  123. Crameri R, Davies JE, Huetter R (1986) Plasmid curing and generation of mutations induced with ethidium bromide in Streptomycetes. J Gen Microbiol 132: 819–824

    PubMed  CAS  Google Scholar 

  124. Berg DE, Berg CM (1983) The prokaryotic transposable element Tn5. Bio/Technology 1: 417–435

    Google Scholar 

  125. McHenney MA, Baltz RH (1996) Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production. Microbiology 142: 2363–2373

    PubMed  CAS  Google Scholar 

  126. Baltz RH, McHenney MA, Cantwell CA, Queener SW, Solenberg PJ (1997) Applications of transposition mutagenesis in antibiotic producing streptomyces. Ant v Leeuwenhoek 71:179–187

    CAS  Google Scholar 

  127. Solenberg PJ, Cantwell CA, Tietz AJ, McGilvray D, Queener SW, Baltz RH (1996) Transposition mutagenesis in Streptomyces fradiae: identification of a neutral site for the stable insertion of DNA by transposon exchange. Gene 16: 67–72

    Google Scholar 

  128. Ikeda H, Takada Y, Pang CH, Tanaka H, Omura S (1993) Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol 175: 2077–2082

    PubMed  CAS  Google Scholar 

  129. Thompson CJ, Ward JM, Hopwood DH (1982) Cloning of antibiotic resistance and nutritional genes in streptomycetes. J Bacteriol 151: 668–677

    PubMed  CAS  Google Scholar 

  130. Baltz RH, Hosted TJ (1996) Molecular genetic methods for improving secondary-metabolite production in actinomycetes. Trends Biotechnol 14: 245–250

    PubMed  CAS  Google Scholar 

  131. Martin JF, Gil JA (l984) Cloning and expression of antibiotic production genes. Bio/Technology 2: 63–72

    Google Scholar 

  132. Liras P (1988) Cloning of antibiotic biosynthetic genes. In: JA Thompson (ed): Use of recombinant DNA techniques for improvement of fermentation organisms. CRC Press, Boca Raton, 217–253

    Google Scholar 

  133. Coco EA, Narva KE, Feitelson JS (1991) New classes of Streptomyces coelicolor A3(2) mutants blocked in undecylprodigiosin (Red) biosynthesis. Mol Gen Genet 227: 28–32

    PubMed  CAS  Google Scholar 

  134. Chen CW, Lin HF, Kuo CL, Tsai HL, Tsai JFY (1988) Cloning and expression of a DNA sequence conferring cephamycin C production. Bio/Technology 6: 1222–1224

    CAS  Google Scholar 

  135. Demain AL, Elander RP (1999) The β-lactam antibiotics: past, present, and future. Ant v Leeuwenhoek 75: 5–19

    CAS  Google Scholar 

  136. Diez B, Gutierrez S, Barredo JL, van Solinger P, van der Voort LHM, Martin JF (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the γ-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and pcbDE genes. J Biol Chem 265: 16358–16365

    PubMed  CAS  Google Scholar 

  137. Gutierrez S, Diez B, Alvarez E, Barredo JL, Martin JF (1991) Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzyl penicillin by the transformants. Mol Gen Genet 225: 56–64

    PubMed  CAS  Google Scholar 

  138. Carr LG, Skatrud PL, Sheetz ME, Queener SW, Ingolia TD (1986) Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene 48: 257–266

    PubMed  CAS  Google Scholar 

  139. Weigel BJ, Burgett SG, Chen VJ, Skatrud PL, Frolik CA, Queener SW, Ingolia TD (1988) Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. J Bacteriol 170: 3817–3826

    PubMed  CAS  Google Scholar 

  140. Leskiw BK, Aharonowitz Y, Mevarech M, Wolfe S, Vining LC, Westlake DWS, Jensen SE (1988) Cloning and nucleotide sequence determination of the isopenicillin N synthetase gene from Streptomyces clavuligerus. Gene 62: 187–196

    PubMed  CAS  Google Scholar 

  141. Garcia-Dominguez M, Liras P, Martin JF (1991) Cloning and characterization of the isopenicillin N synthase gene of Streptomyces griseus NRRL 3851 and studies of expression and complementation of the cephamycin pathway in Streptomyces clavuligerus. Antimicrob Agents Chemother 35: 44–52

    PubMed  CAS  Google Scholar 

  142. Shiffman D, Mevarech M, Jensen SE, Cohen G, Aharonowitz Y (1988) Cloning and comparative analysis of the gene encoding isopenicillin N synthase in Streptomyces. Mol Gen Genet 214: 562–569

    PubMed  CAS  Google Scholar 

  143. Skatrud PL, Fisher DL, Ingolia TD, Queener SW (1987) Improved transformation of Cephalosporium acremonium. In: M Alacevic, D Hranueli (eds): Genetics of industrial microorganisms, part B. Pliva, Zagreb, 111–119

    Google Scholar 

  144. Theilgaard HA, van den Berg MA, Mulder CA, Bovenberg RAL, Nielsen J (2001) Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 72: 379–388

    PubMed  CAS  Google Scholar 

  145. Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL, Queener SW (1989) Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Bio/Technology 7: 477–485

    CAS  Google Scholar 

  146. Rodriguez-Saiz M, Lembo M, Bertetti L, Muraca R, Velasc, J, Malcangi A, Luis de la Fuente J, Barredo JL (2004) Strain improvement for cephalosporin production by Acremonium chrysogenum using geneticin as a suitable transformation marker. FEMS Microbiol Lett 235:43–49

    PubMed  CAS  Google Scholar 

  147. Basch J, Chiang S-JD (1998) Genetic engineering approach to reduce undesirable byproducts in cephalosporin C fermentation. J Indust Microbiol Biotechnol 20: 344–353

    CAS  Google Scholar 

  148. Mayer H, Collins J, Wagner F (1980) Cloning of the penicillin G-acylase gene of Escherichia coli ATCC 11105 on multicopy plasmids. In: HH Weetall, GP Royer (eds): Enzyme engineering, vol. 5. Plenum, New York, 61–69

    Google Scholar 

  149. Elander RP (1995) Genetic engineering applications in the development of selected industrial enzymes and therapeutic proteins. In: R Sankaran, KS Manja (eds): Microbes for better living. Defense Food Research Laboratory, Mysore, India, 619–628

    Google Scholar 

  150. Luo H, Yu H, Li Q, Shen Z (2004) Cloning and co-expression of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase genes in Escherichia coli. Enzyme Microb Technol 35: 514–580

    CAS  Google Scholar 

  151. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1: 1–11

    PubMed  CAS  Google Scholar 

  152. Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55: 263–283

    PubMed  CAS  Google Scholar 

  153. Kacser H, Acerenza L (1993) A universal method for achieving increases in metabolite production. Eur J Biochem 216: 361–367

    PubMed  CAS  Google Scholar 

  154. Khetan A, Hu WS (1999) Metabolic engineering of antibiotic biosynthetic pathways. In: AL Demain, JE Davies (eds): Manual of industrial microbiology and biotechnology. ASM Press, Washington, DC, 717–724

    Google Scholar 

  155. Khetan A, Hu W-S (1999) Metabolic engineering of antibiotic biosynthesis for process improvement. In: SY Lee, ET Papoutsakis (eds): Metabolic engineering. Marcel Dekker, New York, 177–202

    Google Scholar 

  156. Thykaer J, Nielsen J (2003) Metabolic engineering of β-lactam production. Metab Eng 5: 56–69

    PubMed  CAS  Google Scholar 

  157. Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of Escherichia coli. Science 291: 1790–1792

    PubMed  CAS  Google Scholar 

  158. Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and development. Nature Rev/Drug Disc 2: 1019–1025

    CAS  Google Scholar 

  159. Otten SL, Stutzman-Engwall J, Hutchinson CR (1990) Cloning and expression of daunorubicin biosynthesis genes from Streptomyces peucetius and S. peucetius subsp. caisius. J Bacteriol 172: 3427–3434

    PubMed  CAS  Google Scholar 

  160. Decker H, Summers RG, Hutchinson CR (1994) Overproduction of the acyl carrier protein component of a type II polyketide synthase stimulates production of tetracenomycin biosynthetic intermediates in Streptomyces glaucescens. J Antibiot 47: 54–63

    PubMed  CAS  Google Scholar 

  161. Madduri K, Waldron C, Matsushima P, Broughton MC, Crawford K, Merlo DJ, Baltz RH (2001) Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa. J Indust Microbiol Biotechnol 27: 399–402

    CAS  Google Scholar 

  162. Butler MJ, Bruheim P, Jovetic S, Marinelli F, Postma PW, Bibb MJ (2002) Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol 68: 4731–4739

    PubMed  CAS  Google Scholar 

  163. Voegtli M, Chang PC, Cohen SN (1994) afsR2: a previously undetected gene encoding a 63-amino acid protein that stimulates antibiotic production in Streptomyces lividans. Mol Microbiol 14: 643–653

    Google Scholar 

  164. Lee JY, Hwang YS, Kim SS, Kim ES, Choi CY (2000) Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. J Biosci Bioeng 89: 606–608

    PubMed  CAS  Google Scholar 

  165. Hwang YS, Kim ES, Biro S, Choi CY (2003) Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains. Appl Environ Microbiol 69: 1263–1269

    PubMed  CAS  Google Scholar 

  166. Geistlich M, Losick R, Turner JR, Rao RN (1992) Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens. MolMicrobiol 6: 2019–2029

    CAS  Google Scholar 

  167. Lombo F, Brana AF, Mendez C, Salas JA (1999) The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181: 642–647

    PubMed  CAS  Google Scholar 

  168. Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284: 1368–1372

    PubMed  CAS  Google Scholar 

  169. Mao Y, Varoglu M, Sherman DH (1999) Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 6: 251–263

    PubMed  CAS  Google Scholar 

  170. Brian P, Riggle PJ, Santos RA, Champness WC (1996) Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative transduction system. J Bacteriol 178: 3221–3231

    PubMed  CAS  Google Scholar 

  171. Volokhan O, Skletta H, Sekurova ON, Ellingsen TE, Zotchev SB (2005) An unexpected role for the putative 4′-phosphopantetheinyl transferase-encoding gene nysF in the regulation of nystatin biosynthesis in Streptomyces noursei ATCC 11455. FEMS Microbiol Lett 249: 57–64

    PubMed  CAS  Google Scholar 

  172. Cox KL, Fishman SE, Larson JL, Stanzak R, Reynolds PA, Yeh WK, Van Frank RM, Birmingham VA, Hershberger CL, Seno ET (1987) Cloning and characterization of genes involved in tylosin biosynthesis. In: M Alacevic, D Hranueli, Z Toman (eds): Genetics of industrial microorganisms, part B. Pliva, Zagreb, 337–346

    Google Scholar 

  173. Fishman SE, Cox K, Larson JL, Reynolds PA, Seno ET, Yeh WK, Van Frank R, Hershberger CL (1987) Cloning genes for the biosynthesis of a macrolide antibiotic. Proc Natl Acad Sci USA 84: 8248–8252

    PubMed  CAS  Google Scholar 

  174. Kennedy J, Turner G (1996) δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253: 189–197

    PubMed  CAS  Google Scholar 

  175. Matsuda A, Sugiura H, Matsuyama K, Matsumoto H, Ichikawa S, Komatsu KI (1992) Molecular cloning of acetyl coenzyme A: deacetylcephalosporin C O-acetyltransferase cDNA from Acremonium chrysogenum: sequence and expression of catalytic activity in yeast. Biochem Biophys Res Commun 182: 995–1001

    PubMed  CAS  Google Scholar 

  176. Mathison L, Soliday C, Stepan T, Aldrich T, Rambosek J (1993) Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase. Curr Genet 23: 33–41

    PubMed  CAS  Google Scholar 

  177. Gutierrez S, Velasco J, Marcos AT, Fernandez FJ, Fierro F, Barredo JL, Diez B, Martin JF (1997) Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl Microbiol Biotechnol 48: 606–614

    PubMed  CAS  Google Scholar 

  178. Cantwell C, Beckmann R, Whiteman P, Queener SW, Abraham EP (1992) Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc R Soc Lond (Biol) 248: 283–289

    CAS  Google Scholar 

  179. Crawford L, Stepan AM, Mcada PC, Rambosek JA, Conder MJ, Vinci VA, Reeves CD (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Bio/Technology 13: 58–62

    PubMed  CAS  Google Scholar 

  180. Velasco J, Adrio JL, Moreno MA, Diez B, Soler G, Barredo JL (2000) Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nature Biotechnol 18: 857–861

    CAS  Google Scholar 

  181. Brunker P, Minas W, Kallio PT, Bailey JE (1998). Genetic engineering of an industrial strain of Saccharopolyspora erythrea for stable expression of the Vitreoscilla hemoglobin gene (vhb). Microbiology 144: 2441–2448

    PubMed  CAS  Google Scholar 

  182. Minas W, Brunker P, Kallio PT, Bailey JE (1998) Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea. Biotechnol Prog 1: 561–566

    Google Scholar 

  183. Lombo F, Pfeifer B, Leaf T, Ou S, Kim YS, Cane DE, Licari P, Khosla C (2001) Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering. Biotechnol Prog 17: 612–617

    PubMed  CAS  Google Scholar 

  184. Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52: 109–121

    CAS  Google Scholar 

  185. Khosla C, Bailey JE (1988) Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331: 633–635

    PubMed  CAS  Google Scholar 

  186. Bro C, Nielsen J (2004) Impact of ‘ome’ analyses on inverse metabolic engineering. Metab Eng 6: 204–211

    PubMed  CAS  Google Scholar 

  187. Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM(2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6: 300–312

    PubMed  CAS  Google Scholar 

  188. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58: 217–223

    PubMed  CAS  Google Scholar 

  189. Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nature Biotechnol 22: 1261–1267

    CAS  Google Scholar 

  190. Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Boers ME, Blomquist PR, Martinez EJ, Monreal AW et al (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nature Biotechnol 21: 150–156

    CAS  Google Scholar 

  191. Lum AM, Huang J, Hutchinson CR, Kao CM (2004) Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metab Eng 6: 186–196

    PubMed  CAS  Google Scholar 

  192. Skandalis A, Encell LP, Loeb LA (1997) Creating novel enzymes by applied molecular evolution. Chem Biol 4: 889–898

    PubMed  CAS  Google Scholar 

  193. Kuchner O, Arnold FH (1997) Directed evolution of enzyme catalysis. Trends Biotechnol 15: 523–530

    PubMed  CAS  Google Scholar 

  194. Arnold FH (1998) Design by directed evolution. Acc Chem Res 31: 125–131

    CAS  Google Scholar 

  195. Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409: 253–257

    PubMed  CAS  Google Scholar 

  196. Zhao H, Chockalingam K, Chen Z (2002) Directed evolution of enzymes and pathways for industrial biocatalysis. Curr Opin Biotechnol 13: 104–110

    PubMed  CAS  Google Scholar 

  197. Ness JE, Del Cardayre SB, Minshull J, Stemmer WP (2000) Molecular breeding: the natural approach to protein design. Adv Prot Chem 55: 261–292

    CAS  Google Scholar 

  198. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391

    PubMed  CAS  Google Scholar 

  199. Zhao H, Arnold FH (1997) Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res 25: 1307–1308

    PubMed  CAS  Google Scholar 

  200. Patten PA, Howard RJ, Stemmer W (1997) Applications of DNA shuffling to pharmaceuticals and vaccines. Curr Opin Biotechnol 8: 724–733

    PubMed  CAS  Google Scholar 

  201. Kurtzman AL, Govindarajan S, Vahle K, Jones JT, Heinrichs V, Patten PA (2001) Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins. Curr Opin Biotechnol 12: 361–370

    PubMed  CAS  Google Scholar 

  202. Lutz S, Ostermeier M, Moore GL, Maranas CD, Benkovic SP (2001) Creating multiplecrossover DNA libraries independent of sequence identity. Proc Natl Acad Sci USA 98: 11248–11253

    PubMed  CAS  Google Scholar 

  203. Marshall SH (2002) DNA shuffling: induced molecular breeding to produce new generation long-lasting vaccines. Biotechnol Adv 20: 229–238

    PubMed  CAS  Google Scholar 

  204. Locher CP, Soong NW, Whalen RG, Punnonen J (2004) Development of novel vaccines using DNA shuffling and screening strategies. Curr Opin Mol Ther 6: 34–39

    PubMed  CAS  Google Scholar 

  205. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: 644–646

    PubMed  CAS  Google Scholar 

  206. Hutchinson C (1998) Combinatorial biosynthesis for new drug discovery. Curr Opin Microbiol 1: 319–329

    PubMed  CAS  Google Scholar 

  207. Reeves CD (2003) The enzymology of combinatorial biosynthesis. Crit Rev Biotechnol 23: 95–147

    PubMed  CAS  Google Scholar 

  208. Hopwood DA, Malpartida F, Kieser HM, Ikeda H, Duncan J, Fujii I, Rudd BAM, Floss, HG, Omura S (1985) Production of ‘hybrid’ antibiotics by genetic engineering. Nature 314: 642–644

    PubMed  CAS  Google Scholar 

  209. Rodriguez E, McDaniel R (2001) Combinatorial biosynthesis of antimicrobials and other natural products. Curr Opin Microbiol 4: 526–534

    PubMed  CAS  Google Scholar 

  210. Donadio S, Sosio M (2003) Strategies for combinatorial biosynthesis with modular polyketide synthases. Comb Chem High Throughput Screen 6: 489–500

    PubMed  CAS  Google Scholar 

  211. Kantola J, Kunnari T, Mantsala P, Ylihonko K (2003) Expanding the scope of aromatic polyketides by combinatorial biosynthesis. Comb Chem High Throughput Screen 6: 501–512

    PubMed  CAS  Google Scholar 

  212. McAlpine JB, Tuan JS, Brown DP, Grebner KB, Whittern DN, Buko A, Katz L (1987) New antibiotics from genetically engineered actinomycetes. I.2-Norerythromycins, isolation and structural determinations. J Antibiot 40: 1115–1122

    PubMed  CAS  Google Scholar 

  213. Epp JK, Huber MLB, Turner JR, Goodson T, Schoner BE (1989) Production of hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene 85: 293–301

    PubMed  CAS  Google Scholar 

  214. Weber JM, Leung JO, Swanson SJ, Idler KB, McAlpine JB (1991) An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea. Science 252: 114–117

    PubMed  CAS  Google Scholar 

  215. Donadio S, Staver MJ. McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675–679

    PubMed  CAS  Google Scholar 

  216. Donadio S, McAlpine JB, Sheldon PA, Jackson MA, Katz L (1993) An erythromycin analog produced by reprogramming of polyketide synthesis. Proc Natl Acad Sci USA 90: 7119–7123

    PubMed  CAS  Google Scholar 

  217. Hara O, Hutchinson CR (1992) A macrolide 3-O-acyltransferase gene from the midecamycin-producing species Streptomyces mycarofaciens. J Bacteriol 174: 5141–5144

    PubMed  CAS  Google Scholar 

  218. Katz L, Donadio S (1993) Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol 47: 875–912

    PubMed  CAS  Google Scholar 

  219. Hopwood DA (1993) Genetic engineering of Streptomyces to create hybrid antibiotics. Curr Opin Biotechnol 4: 531–537

    PubMed  CAS  Google Scholar 

  220. McDaniel R, Ebert-Khosla S, Hopwood D, Khosla C (1993) Engineered biosynthesis of novel polyketides. Science 262: 1546–1550

    PubMed  CAS  Google Scholar 

  221. McDaniel R, Ebert-Khosla S, Hopwood D, Khosla C (1993) Engineered biosynthesis of novel polyketides: manipulation and analysis of an aromatic polyketide synthase with unproven catalytic specificities. J Am Chem Soc 115: 11671–11675

    CAS  Google Scholar 

  222. McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Betlach M, Ashley G (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel ‘unnatural’ natural products. Proc Natl Acad Sci USA 96: 1846–1851

    PubMed  CAS  Google Scholar 

  223. Khosla C, McDaniel R, Ebert-Khosla S, Torres R. Sherman DH, Bibb MJ, Hopwood DA (1993) Genetic construction and functional analysis of hybrid polyketide synthases containing heterologous acyl carrier proteins. J Bacteriol 175: 2197–2204

    PubMed  CAS  Google Scholar 

  224. Decker H, Hutchinson CR (1993) Transcriptional analysis of the Streptomyces glaucescens tetracenomycin biosynthesis gene cluster. J Bacteriol 175: 3887–3892

    PubMed  CAS  Google Scholar 

  225. Hutchinson CR, Fujii I (1995) Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu Rev Microbiol 49: 201–238

    PubMed  CAS  Google Scholar 

  226. Tsoi CJ, Khosla C (1995) Combinatorial biosynthesis of unnatural natural products — the polyketide example. Chem Biol 2: 355–362

    PubMed  CAS  Google Scholar 

  227. Kao CM, Luo GL, Katz L, Cane DE, Khosla C (1995) Manipulation of macrolide ring size by directed mutagenesis of a modular polyketide synthase. J Am Chem Soc 117: 9105–9106

    Google Scholar 

  228. Pacey MS, Dirlam JP, Geldart RW, Leadlay PF, McArthur HA, McCormick EL, Monday RA, O’Connell TN, Staunton J, Winchester TJ (1998) Novel erythromycins from a recombinant Saccharopolyspora erythraea strain NRRL 2338pIG1. I. Fermentation, isolation and biological activity. J Antibiot 51: 1029–1034

    PubMed  CAS  Google Scholar 

  229. Wohlert SE, Blanco G, Lombo F, Fernandez E, Brana AF, Reich S, Udvarnoki G, Mendez C, Decker H, Frevert J et al (1998) Novel hybrid tetracenomycins through combinatorial biosynthesis using a glycosyltransferase encoded by the elm-genes in cosmid 16F4 and which shows a very broad sugar substrate specificity. J Amer Chem Soc 120: 10596–10601

    CAS  Google Scholar 

  230. Xue Q, Hutchinson CR, Santi DV (1999) A multi-plasmid approach to preparing large libraries of polyketides. Proc Natl Acad Sci USA 96: 11740–11745

    PubMed  CAS  Google Scholar 

  231. Pfeifer BA, Khosla C (2001) Biosynthesis of polyketides in heterologous hosts. Microbiol Molec Biol Rev 65: 106–118

    CAS  Google Scholar 

  232. Trefzer A, Blanco G, Remsing L, Kunzel E, Rix U, Lipata F, Brana AF, Mendez C, Rohr J, Bechtold A et al (2002) Rationally designed glycosylated premithramycins: hybrid aromatic polyketides using genes fom three different biosynthetic pathways. J AmChem Soc 124: 6056–6062

    CAS  Google Scholar 

  233. Zhao L, Ahlert J, Xue Y, Thorson JS, Sherman DH, Liu H-W (1999) Engineering a methymycin/pikromycin-calicheamicin hybrid: construction of two new macrolides carrying a designed sugar moiety. J Am Chem Soc 121: 9881–9882

    CAS  Google Scholar 

  234. Mendez C, Salas JA (2001) Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol 19: 449–456

    PubMed  CAS  Google Scholar 

  235. Bartel PL, Zhu CB, Lampel JS, Dosch DC, Connors NC, Strohl WR, Beale JM Jr, Floss HG (1990) Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosynthesis genes in streptomycetes; clarification of actinorhodin gene functions. J Bacteriol 172: 4816–4826

    PubMed  CAS  Google Scholar 

  236. Strohl WR, Bartel PL, Li Y, Connors NC, Woodman RH (1991) Expression of polyketide biosynthesis and regulatory genes in heterologous streptomycetes. J Indust Microbiol 7: 163–174

    CAS  Google Scholar 

  237. Hwang CK, Kim HS, Hong YS, Kim YH, Hong SK, Kim SJ, Lee JJ (1995) Expresssion of Streptomyces peucetius genes for doxorubicin resistance and aklavinone 11-hydroxylase in Streptomyces galilaeus ATCC 31133 and production of a hybrid aclacinomycin. Antimicrob Agents Chemother 39: 1616–1620

    PubMed  CAS  Google Scholar 

  238. Niemi J, Mantsala P (1995) Nucleotide sequences and expression of genes from Streptomyces purpurescens that cause the production of new anthracyclines in Streptomyces galilaeus. J Bacteriol 177: 2942–2945

    PubMed  CAS  Google Scholar 

  239. Ylihonko K, Hakala J, Kunari T, Mantsala P (1996) Production of hybrid anthracycline antibiotics by heterologous expression of Streptomyces nogalaternogalamycin biosynthesis genes. Microbiology 142: 1965–1972

    PubMed  CAS  Google Scholar 

  240. Kim HS, Hong YS, Kim YH, Yoo OJ, Lee JJ (1996) New anthracycline metabolites produced by the aklavinone 11-hydroxylase gene in Streptomyces galilaeus ATCC 31133. J Antibiot 49: 355–360

    PubMed  CAS  Google Scholar 

  241. Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269: 69–72

    PubMed  CAS  Google Scholar 

  242. Staunton J (1998) Combinatorial biosynthesis of erythromycin and complex polyketides. Curr Opin Chem Biol 2: 339–345

    PubMed  CAS  Google Scholar 

  243. Hopwood DA (2003) The Streptomyces genome — be prepared! Nature Biotechnol 21: 505–506

    CAS  Google Scholar 

  244. Ikeda H, Ishikawa J, Hanamoto A, Shinose K, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnol 21: 526–531

    Google Scholar 

  245. Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nature Biotechnol 21: 187–190

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel (Switzerland)

About this chapter

Cite this chapter

Demain, A.L., Adrio, J.L. (2008). Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. In: Petersen, F., Amstutz, R. (eds) Natural Compounds as Drugs Volume I. Progress in Drug Research, vol 65. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8117-2_7

Download citation

Publish with us

Policies and ethics