Advertisement

Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation

  • Arnold L. Demain
  • Jose L. Adrio
Part of the Progress in Drug Research book series (PDR, volume 65)

Abstract

Microbes have been good to us. They have given us thousands of valuable products with novel structures and activities. In nature, they only produce tiny amounts of these secondary metabolic products as a matter of survival. Thus, these metabolites are not overproduced in nature, but they must be overproduced in the pharmaceutical industry. Genetic manipulations are used in industry to obtain strains that produce hundreds or thousands of times more than that produced by the originally isolated strain. These strain improvement programs traditionally employ mutagenesis followed by screening or selection; this is known as ‘brute-force’ technology. Today, they are supplemented by modern strategic technologies developed via advances in molecular biology, recombinant DNA technology, and genetics. The progress in strain improvement has increased fermentation productivity and decreased costs tremendously. These genetic programs also serve other goals such as the elimination of undesirable products or analogs, discovery of new antibiotics, and deciphering of biosynthetic pathways.

Keywords

Protoplast Fusion Penicillium Chrysogenum Strain Improvement Genome Shuffling Combinatorial Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parekh S (2000) Strain improvement. In: J Lederberg (ed): Encyclopedia of microbiology, vol. 4, 2nd ed. Academic Press, San Diego, 428–443Google Scholar
  2. 2.
    Vinci VA, Byng G (1999) Strain improvement by nonrecombinant methods. In: AL Demain, JE Davies (eds): Manual of industrial microbiology and biotechnology, 2nd ed. ASM Press, Washington, DC, 103–113Google Scholar
  3. 3.
    Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54: 287–301PubMedGoogle Scholar
  4. 4.
    Simpson IN, Caten CE (1979) Induced quantitative variation for penicillin titre in clonal populations of Aspergillus nidulans. J Gen Microbiol 110: 1–12PubMedGoogle Scholar
  5. 5.
    Baltz RH (1986) Mutagenesis in Streptomyces. In: AL Demain, NA Solomon (eds): Manual of industrial microbiology and biotechnology. ASM, Washington, DC, 184–190Google Scholar
  6. 6.
    Baltz RH (1995) Gene expression in recombinant Streptomyces. In: A Smith (ed): Gene expression in recombinant microorganisms. Marcel Dekker, New York, 309–381Google Scholar
  7. 7.
    Baltz RH (1998) Genetic manipulation of antibiotic producing Streptomyces. Trends Microbiol 6: 76–83PubMedGoogle Scholar
  8. 8.
    Baltz RH (1999) Mutagenesis. In: MC Flickinger, SW Drew (eds): Encyclopedia ofbioprocessing technology: fermentation, biocatalysis, and separation. Wiley, New York, 1819–1822Google Scholar
  9. 9.
    Keller U (1983) Highly efficient mutagenesis of Claviceps purpurea by using protoplasts. Appl Environ Microbiol 46: 580–584PubMedGoogle Scholar
  10. 10.
    Takebe H, Imai S, Ogawa H, Satoh A, Tanaka H (1989) Breeding of bialaphos producing strains from a biochemical engineering viewpoint. J Ferm Bioeng 67: 226–232Google Scholar
  11. 11.
    Kim KS, Cho NY, Pai HS, Ryu DDY (1983) Mutagenesis of Micromonospora rosaria by using protoplasts and mycelial fragments. Appl Environ Microbiol 46: 689–693PubMedGoogle Scholar
  12. 12.
    Kurzatkowski W, Kurylowicz W, Solecka J, Penyige A (1986) Improvement of Streptomyces strains by the regeneration of protoplasts. In: G Szabo, S Biro, M Goodfellow (eds): Biological, biochemical and biomedical aspects of actinomycetes. Part A. Academiai Kiado, Budapest, 289–292Google Scholar
  13. 13.
    Strohl WR (2001) Biochemical engineering of natural product biosynthesis pathways. Metab Eng 3: 4–14PubMedGoogle Scholar
  14. 14.
    Hersbach GJM, van der Beck CP, van Dijck PWM(1984) The penicillins: properties, biosynthesis, and fermentation. In: EJ Vandamme (ed): Biotechnology of industrial antibiotics. Marcel Dekker, New York, 45–140Google Scholar
  15. 15.
    Smith DJ, Bull JH, Edwards J, Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet 216: 492–497PubMedGoogle Scholar
  16. 16.
    Barredo JL, Diez B, Alvarez E, Martin JF (1989) Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of P. chrysogenum. Curr Genet 16: 453–459PubMedGoogle Scholar
  17. 17.
    Smith DJ, Burnham MKR, Bull JH, Hodgson JE, Ward JM, Browne P, Brown J, Barton B, Earl AJ, Turner G (1990) β-Lactam antibiotic biosynthesis genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J 9: 741–747PubMedGoogle Scholar
  18. 18.
    Fierro F, Barredo JL, Diez B, Gutierrez S, Fernandez FJ, Martin JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92: 6200–6204PubMedGoogle Scholar
  19. 19.
    Podojil M, Blumauerova M, Culik K, Vanek Z (1984) The tetracycyclines: properties, biosynthesis and fermentation. In: EJ Vandamme (ed): Biotechnology of industrial antibiotics. Marcel Dekker, New York, 259–279Google Scholar
  20. 20.
    Demain AL, Elander RP (1999) The β-lactam antibiotics: past, present, and future. Ant v Leeuwenhoek 75: 5–19Google Scholar
  21. 21.
    Chen W-Q, Yu ZN, Zheng Y-H (2004) Expression of Vitreoscilla hemoglobin gene in Streptomyces fradiae and its effect on cell growth and synthesis of tylosin. Chin J Antibiot 29: 516–520Google Scholar
  22. 22.
    Liu C-M (1982) Microbial aspects of polyether antibiotics: activity, production and biosynthesis. In: JW Westley (ed): Polyether antibiotics. Naturally occurring acid ionophores. Vol. 1. Biology. Marcel Dekker, New York, 43–102Google Scholar
  23. 23.
    Blumauerova M, Pokorny V, Stastna J, Hostalek Z, Vanek Z (1978) Developmental mutants of Streptomyces coeruleorubidis, a producer of anthracyclines: isolation and preliminary characterization. Folia Microbiol 23: 177–182Google Scholar
  24. 24.
    Blumaerova M, Podojil M, Gauze G., Maksikmova TS, Panos J, Vanek Z (1980) Spontaneous variability of Streptomyces glomeratus, a producer of anthracycline antibiotics beromycins. Folia Microbiol 25: 207–212Google Scholar
  25. 25.
    Blumaerova M, Podojil M, Gauze GF, Maksikmova TS, Panos J, Vanek Z (1980) Effect of cultivation conditions on the activity of the beromycin producer Streptomyces glomeratus 3980 and its spontaneous variants. Folia Microbiol 25: 213–218Google Scholar
  26. 26.
    Lee JC, Park HR, Park DJ, Son KH, Yoon KH, Kim YB, Kim CJ (2003) Production of teicoplanin by a mutant of Actinoplanes teicomyceticus. Biotechnol Lett 25: 537–540PubMedGoogle Scholar
  27. 27.
    Haavik HI, Froyshov O (1982) On the role of L-leucine in the control of bacitracin formation by Bacillus licheniformis. In: H Kleinkauf, H von Doehren (eds): Peptide antibiotics: biosynthesis and functions. Walter de Gruyter, Berlin, 155–159Google Scholar
  28. 28.
    Godfrey O (1973) Isolation of regulatory mutants of the aspartic and pyruvic acid families and their effect on antibiotic production in Streptomyces lipmanii. Antimicrob Agents Chemother 4: 73–79PubMedGoogle Scholar
  29. 29.
    Lee SH, Lee KJ (1995) Threonine dehydratases in different strains of Streptomyces fradiae. J Biotechnol 43: 95–102PubMedGoogle Scholar
  30. 30.
    Polsinelli M, Albertini A, Cassani G, Ciferri O (1965) Relation of biochemical mutations to actinomycin synthesis in Streptomyces antibioticus. J Gen Microbiol 39: 239–246PubMedGoogle Scholar
  31. 31.
    Saburova TP, Lapchinskaya OA, Sinyagina OP, Trutneva EM, Lvova NA (1977) Auxotrophic mutants in selection of Actinomyces coeruleorubidus, an organism producing rubomycin. Antibiotiki 22: 1095–1100PubMedGoogle Scholar
  32. 32.
    Dulaney EL, Dulaney DD (1967) Mutant populations of Streptomyces viridifaciens. Trans NY Acad Sci II 29: 782–799Google Scholar
  33. 33.
    Unowsky J, Hoppe DC (1978) Increased production of the antibiotic aurodox (X-5108) by aurodox-resistant mutants. J Antibiot 31: 662–666PubMedGoogle Scholar
  34. 34.
    Mendelovitz S, Aharonowitz Y (1983) β-Lactam antibiotic production by Streptomyces clavuligerus mutants impaired in regulation of aspartokinase. J Gen Microbiol 129: 2063–2069PubMedGoogle Scholar
  35. 35.
    Smith A (1987) Enzyme regulation of desferrioxamine biosynthesis: a basis for a rational approach to process development. In: M Alacevic, D Hranueli, Z Toman (eds): Fifth International Symposium on the Genetics of Industrial Microorganisms 1986. Pliva, Zagreb, 513–527Google Scholar
  36. 36.
    Pospisil S, Kopecky J, Prikrylova V, Spizek J (1999) Overproduction of 2-ketoisovalerate and monensin production by regulatory mutants of Streptomyces cinnamonensis resistant to 2-ketobutyrate and amino acids. FEMS Microbiol Lett 172: 197–204Google Scholar
  37. 37.
    Wang MR, Ding H, Hu YJ (1996) The action of arginine and valine in the biosynthesis of teicoplanin. Chin J Antibiot 21 (Suppl): 77–80Google Scholar
  38. 38.
    Jin ZH, Wang MR, Cen PL (2002a) Production of teichoplanin by valine-analogue resistant mutant strains of Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 58: 63–66PubMedGoogle Scholar
  39. 39.
    Barrios-Gonzalez J, Montenegro E, Martin JF (1993) Penicillin production by mutants resistant to phenylacetic acid. J Ferm Bioeng 7: 455–458Google Scholar
  40. 40.
    Jin ZH, Lin JP, Xu ZN, Cen PL (2002b) Improvement of industry-applied rifamycin Bproducing strain, Amycolatopsis mediterranei, by rational screening. J Gen Appl Microbiol 48: 329–334PubMedGoogle Scholar
  41. 41.
    Elander RP, Aoki H (1982) β-Lactam producing microorganisms — their biology and fermentation behavior. In: RB Morin, M Gorman (eds): Chemistry and biology of β-lactam antibiotics, vol. 3. Academic Press, New York, 83–153Google Scholar
  42. 42.
    Higashide E (1984) The macrolides; properties, biosynthesis, and fermentation. In: EJ Vandamme (ed): Biotechnology of industrial antibiotics. Marcel Dekker, New York, 451–509Google Scholar
  43. 43.
    Gravius B, Glocker D, Pigac J, Pandza K, Hranueli D, Cullum J (1994) The 387 kb linear plasmid pPZG101 of Streptomyces rimosus and its interactions with the chromosome. Microbiology 140: 2271–2277PubMedGoogle Scholar
  44. 43a.
    Crameri R, Davies JE (1986) Increased production of aminoglycosides associated with amplified antibiotic resistance genes. J Antibiot 39: 128–135PubMedGoogle Scholar
  45. 44.
    Hosoya Y, Okamoto S, Muramatsu H, Ochi K (1998) Acquisition of certain streptomycin resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 42: 2041–2047PubMedGoogle Scholar
  46. 45.
    Hesketh A, Ochi K (1997) A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12) mutations conferring resistance to streptomycin. J Antibiot 50: 532–535PubMedGoogle Scholar
  47. 46.
    Okamoto S, Lezhava A, Hosaka T, Okamoto-Hosoya Y, Ochi K (2003) Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J Bacteriol 185: 601–609PubMedGoogle Scholar
  48. 47.
    Okamoto-Hosoya Y, Sato T, Ochi K (2000) Resistance to paromomycin is conferred by rpsL mutations, accompanied by an enhanced antibiotic production in Streptomyces coelicolor A3(2). J Antibiot 53: 1424–1427PubMedGoogle Scholar
  49. 48.
    Hu H, Ochi K (2001) Novel approach for improving the production of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol 67: 1885–1892PubMedGoogle Scholar
  50. 49.
    Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K (2003) Innovative approach for improvement of an antibiotic-overproducing industrial strain of Strepromyces albus. Appl Environ Microbiol 69: 6412–6417PubMedGoogle Scholar
  51. 50.
    Chang LT, McGrory EL, Elander RP (1980) Penicillin production by glucose-derepressed mutants of Penicillium chrysogenum. J Indust Microbiol 6: 165–169Google Scholar
  52. 51.
    Colombo AL, Crespi-Pevellino N, Grein A, Minghetti A, Spalla CJ (1981) Metabolic and genetic aspects of the relationship between growth and tetracycline production in Streptomyces aureofaciens. Biotechnol Lett 3: 71–76Google Scholar
  53. 52.
    Martin JF, Naharro G, Liras P, Villanueva JR (1979) Isolation of mutants deregulated in phosphate control of candicidin biosynthesis. J Antibiot 32: 600–606PubMedGoogle Scholar
  54. 53.
    Elander RP (1969) Applications of microbial genetics to industrial fermentations. In: D Perlman (ed): Fermentation Advances. Academic Press, New York, 89–114Google Scholar
  55. 54.
    Katagiri I (1954) Study on chlortetracycline. Improvement of chlortetracycline-producing strain by several kinds of methods. J Antibiot 7: 45–52PubMedGoogle Scholar
  56. 55.
    Bannerjee AB, Bose SK (1964) A rapid method for isolating mutants of Bacillus subtilis producing increased or decreased amounts of the antibiotic, mycobacillin. J Appl Bacteriol 27: 93–95Google Scholar
  57. 56.
    Ditchburn P, Giddings B, MacDonald KD (1974) Rapid screening for the isolation of mutants of Aspergillus nidulans with increased penicillin yields. J Appl Bacteriol 37: 515–523PubMedGoogle Scholar
  58. 57.
    Ichikawa T, Date M, Ishikura T, Ozaki A (1971) Improvement of kasugamycin-producing strain by agar piece method and the prototroph method. Folia Microbiol 16: 218–224Google Scholar
  59. 58.
    Chang LT, Elander RP (1979) Rational selection for improved cephalosporin C productivity in strains of Acremonium chrysogenum. Devel Indust Microbiol 20: 367–379Google Scholar
  60. 59.
    Gesheva V (1994) Isolation of spontaneous Streptomyces hygroscopicus 111–81 phosphate-deregulated mutants hyperproducing its antibiotic complex. Biotechnol Lett 16: 443–448Google Scholar
  61. 60.
    Nakatsukasa WM, Mabe JA (1978) Galactose induced colonial dissociation in Streptomyces aureofaciens. J Antibiot 31: 805–808PubMedGoogle Scholar
  62. 61.
    Kitano K, Nozaki Y, Imada A (1985) Selective accumulation of unsulfated carbapenem antibiotics by sulfate transport-negative mutants of Streptomyces griseus subsp. cryophilus C-19393. Agric Biol Chem 49: 677–684Google Scholar
  63. 62.
    Omura S, Ikeda H, Tanaka H (1991) Selective production of specific components of avermectins in Streptomyces avermitilis. J Antibiot 44: 560–563PubMedGoogle Scholar
  64. 63.
    Stutzman-Engwall K, Conlon S, Fedechko R, Kaczmarek F, McArthur H, Krebber A, Chen Y, Minshull J, Raillard SA, Gustafsson C (2003). Engineering the aveC gene to enhance the ratio of doramectin to its CHC-B2 analogue produced in Streptomyces avermitilis. Biotechnol Bioeng 82: 359–369PubMedGoogle Scholar
  65. 64.
    del Cardayre SB (2003) Delivering industrial microorganisms through gene, pathway, and genome shuffling. Abstr S75, SIM Ann Mtg Prog & Abstr 73Google Scholar
  66. 65.
    Vinci VA, Hoerner TD, Coffman AD, Schimmel TG, Dabora RL, Kirpekar AC, Ruby CL, Stieber RW (1991) Mutants of a lovastatin-hyperproducing Aspergillus terreus deficient in the production of sulochrin. J Indust Microbiol 8: 113–120Google Scholar
  67. 66.
    Pospisil S, Peterkova M, Krumphanzl V, Vanek Z (1984) Regulatory mutants of Streptomyces cinnamonensis producing monensin A. FEMS Microbiol Lett 24: 209–213Google Scholar
  68. 67.
    Shier WT, Rinehart KL Jr, Gottlieb D (1969) Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proc Natl Acad Sci USA 63: 198–204PubMedGoogle Scholar
  69. 68.
    Nagaoka K, Demain AL (1975) Mutational biosynthesis of a new antibiotic, streptomutin A, by an idiotroph of Streptomyces griseus. J Antibiot 28: 627–635PubMedGoogle Scholar
  70. 69.
    Lemke JR, Demain AL (1976) Preliminary studies on streptomutin A. Eur J Appl Microbiol 2: 91–94Google Scholar
  71. 70.
    Daum SJ, Lemke JR (1979) Mutational biosynthesis of new antibiotics. Ann Rev Microbiol 33: 241–265Google Scholar
  72. 71.
    Kitamura S, Kase H, Odakura Y, Iida T, Shirahata K, Nakayama K (1982) 2-Hydroxysagamicin: A new antibiotic produced by mutational biosynthesis of Micromonospora sagamiensis. J Antibiot 35: 94–97PubMedGoogle Scholar
  73. 72.
    Cropp TA, Wilson DJ, Reynolds KA (2000) Identification of a cyclohexylcarbonyl CoA biosynthetic gene cluster and application in the production of doramectin. Nature Biotechnol 18: 980–983Google Scholar
  74. 73.
    McGuire J, Thomas MC, Pandey RC, Toussaint M, White RJ (1981) Biosynthesis of daunorubicin glycosides: analysis with blocked mutants. In: M Moo-Young (ed): Advances in biotechnology. Vol. III. Fermentation products. Pergammon Press, New York, 117–122Google Scholar
  75. 74.
    Cassinelli G, Di Matteo F, Forenza S, Ripamonti M, Rivola G, Arcamone F, Di Marco A, Cassaza AM, Soranzo C, Pratesi G (1980) New anthracycline glycosides from Micromonospora. II. Isolation, characterization and biological properties. J Antibiot 33: 1468–1473PubMedGoogle Scholar
  76. 75.
    Yoshimoto A, Matsuzawa Y, Matsuhashi Y, Oki T, Takeuchi T, Umezawa H (1981) Trisarubicinol, new antitumor anthracycline antibiotic. J Antibiot 34: 1492–1494PubMedGoogle Scholar
  77. 76.
    Kirst HA, Wild GM, Baltz RH, Seno ET, Hamill RL, Paschal JW, Dorman DE (1983) Elucidation of structure of novel macrolide antibiotics produced by mutant strains of Streptomyces fradiae. J Antibiot 36: 376–382PubMedGoogle Scholar
  78. 77.
    Spagnoli R, Cappalletti L, Toscano L (1983) Biological conversion of erythronolide B, an intermediate of erythromycin biogenesis, into new ‘hybrid’ macrolide antibiotics. J Antibiot 36: 365–375PubMedGoogle Scholar
  79. 78.
    Lee BK, Puar MS, Patel M, Bartner P, Lotvin J, Munayyer H, Waitz JA (1983) Multistep bioconversion of 20-deoxo-20-dihydro-12, 13-deepoxy-12,13-dehydrorosaranolide to 22-hydroxy-23-o-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxy-rosaramicin. J Antibiot 36: 742–743PubMedGoogle Scholar
  80. 79.
    McCormick JRD (1965) Biosynthesis of the tetracyclines. In: Z Vanek, Z Hostalek (eds): Biogenesis of antibiotic substances. Publishing House of the Czechoslovak Academy of Science, Prague, 73–91Google Scholar
  81. 80.
    Kominek LA (1972) Biosynthesis of novobiocin by Streptomyces niveus. Antimicrob Agents Chemother 1: 123–134PubMedGoogle Scholar
  82. 81.
    Martin JR, Perun TJ, Girolami RL (1966) Studies on the biosynthesis of erythromycins. I. Isolation of an intermediate glycoside, 3-alpha-L-mycarosylerythronolide B. Biochemistry 5: 2852–2856PubMedGoogle Scholar
  83. 82.
    Martin JR, Rosenbrook WR (1967) Studies on the biosynthesis of erythromycins. II. Isolation and structure of a biosynthetic intermediate, 6-deoxyerythronolide B. Biochemistry 6: 435–440PubMedGoogle Scholar
  84. 83.
    Pearce CJ, Akhtar M, Barnett JEG, Mercier D, Sepulchre AM, Gero S (1978) Sub-unit assembly in the biosynthesis of neomycin. The synthesis of 5-O-β-D-ribofuranosyl and 4-O-β-D-ribofuranosyl-2,6-dideoxystreptamines. J Antibiot 31: 74–81PubMedGoogle Scholar
  85. 84.
    Baltz RH, Seno ET, Stonesifer J, Wild GM (1983) Biosynthesis of the macrolide antibiotic tylosin: a preferred pathway from tylactone to tylosin. J Antibiot 36: 131–141PubMedGoogle Scholar
  86. 85.
    Takeda K, Aihara K, Furumai T, Ito Y (1978) An approach to the biosynthetic pathway of butirosins and the related antibiotics. J Antibiot 31: 250–253PubMedGoogle Scholar
  87. 86.
    Fujiwara T, Takahashi Y, Matsumoto K, Kondo E (1980) Isolation of an intermediate of 2-deoxystreptamine biosynthesis from a mutant of Bacillus circulans. J Antibiot 33: 824–829PubMedGoogle Scholar
  88. 87.
    Kase H, Odakura Y, Nakayama K (1982) Sagamycin and the related aminoglycosider: fermentation and biosynthesis. I. Biosynthetic studies with the blocked mutants of Micromonospora sagamiensis. J Antibiot 35: 1–9PubMedGoogle Scholar
  89. 88.
    Hanssen R, Kirby R (1983) The induction by N-methyl-N’-nitro-nitrosoguanidine of multiple closely linked mutations in Streptomyces bikiniensis ISP5235 affecting streptomycin resistance and streptomycin biosynthesis. FEMS Microbiol Lett 17: 317–320Google Scholar
  90. 89.
    Penzikova GA, Levitov MM (1970) A study on transamidinase activity with respect to streptomycin biosynthesis. Biologiya 39: 337–342Google Scholar
  91. 90.
    Vaughn RV, Lotvin J, Puar MS, Patel M, Kershner A, Kalyanpur MG, Marquez J, Waitz JA (1982) Isolation and characterization of two 16-membered lactones: 20-deoxorosaramicin and 20-deoxo-12,13-desepoxy-12,13-dehydrorosaramicin aglycones, from a mutant strain of Micromonospora rosaria. J Antibiot 35: 251–253Google Scholar
  92. 91.
    Motamedi H, Wendt-Pientowski E, Hutchinson CR (1986) Isolation of tetracenomycin C non-producing Streptomyces glaucescens mutants. J Bacteriol 167: 575–580PubMedGoogle Scholar
  93. 92.
    Yue S, Motamedi H, Wendt-Pienskowski E, Hutchinson CR (1986) Anthracycline metabolites of tetracenomycin-non-producing Streptomyces glaucescens. J Bacteriol 167: 581–586PubMedGoogle Scholar
  94. 93.
    Troost T, Katz E (1979) Phenoxazinone biosynthesis: accumulation of a precursor, 4-methyl-3-hydroxyanthranilic acid, by mutants of Streptomyces parvulus. J Gen Microbiol 1: 121–132Google Scholar
  95. 94.
    Nozaki Y, Kitano K, Imada I (1984) Blocked mutants in the biosynthesis of carbapenem antibiotics from Streptomyces griseus subsp. cryophilus. AgricBiol Chem 48: 37–44Google Scholar
  96. 95.
    Kojima I, Fukagawa Y, Okabe M, Ishikura T, Shibamoto N (1988) Mutagenesis of OA-6129 carbapenem-producing blocked mutants and the biosynthesis of carbapenems. J Antibiot 41: 899–907PubMedGoogle Scholar
  97. 96.
    Kibby JJ, McDonald IA, Rickards RW (1980) 3-Amino-5-hydroxybenzoic acid as a key intermediate in ansamycin and maytansinoid biosynthesis. J Chem Soc Chem Comm 768–769Google Scholar
  98. 97.
    Ghisalba O, Fuhrer H, Richter W, Moss S (1981) A genetic approach to the biosynthesis of the rifamycin-chromophore in Nocardia mediterranei. III. Isolation and identification of an early ansamycin-precursor containing the seven-carbon amino starter-unit and three initial acetate/propionate-units of the ansa chain. J Antibiot 34: 58–63PubMedGoogle Scholar
  99. 98.
    Gaucher GM, Lam KS, Grootwassink JWD, Neway J, Deo YM (1981) The initiation and longevity of patulin biosynthesis. Devel Indust Microbiol 22: 219–232Google Scholar
  100. 99.
    Byng GS, Eustice DC, Jensen RA (1979) Biosynthesis of phenazine pigments in mutant and wild-type cultures of Pseudomonas aeruginosa. J Bacteriol 138: 846–852PubMedGoogle Scholar
  101. 100.
    Jarai M (1961) Genetic recombination in Streptomyces aureofaciens. Acta Microbiol Acad Sci Hung 8: 73–79PubMedGoogle Scholar
  102. 101.
    Mindlin SZ (1969) Genetic recombination in the actinomycete breeding. In: G Sermonti, M Alacevic (eds): Genetics and breeding of Streptomyces. Yugoslav Academy of Sciences and Arts, Zagreb, 147–159Google Scholar
  103. 102.
    Kieser HM, Kieser T, Hopwood DA (1992) A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol 174: 5496–5507PubMedGoogle Scholar
  104. 103.
    Ryu DDY, Kim KS, Cho NY, Pai HS (1983) Genetic recombination in Micromonospora rosaria by protoplast fusion. Appl Environ Microbiol 45: 1854–1858PubMedGoogle Scholar
  105. 104.
    Choi KP, Kim KH, Kim JW (1997) Strain improvement of clavulanic acid producing Streptomyces clavuligerus. Abstr. 12P9, 10th Internat Symp Biol Actinomycetes (Beijing) Google Scholar
  106. 105.
    Hamlyn PF, Ball C (1979) Recombination studies with Cephalosporium acremonium. In: OK Sebek, AI Laskin (eds): Genetics of industrial microorganisms. ASM, Washington, DC, 185–191Google Scholar
  107. 106.
    Lein J (1986) The Panlabs penicillin strain improvement program. In: Z Vanek, Z Hostalek (eds): Overproduction ofmicrobial metabolites; strain improvement and process control strategies. Butterworth Publishers, Boston, 105–139Google Scholar
  108. 107.
    Wesseling AC, Lago B (1981) Strain improvement by genetic recombination of cephamycin producers, Nocardia lactamdurans and Streptomyces griseus. Devel Indust Microbiol 22: 641–651Google Scholar
  109. 108.
    Yamashita F, Hotta K, Kurasawa S, Okami Y, Umezawa H (1982) Antibiotic formation by interspecific protoplast fusion in streptomycetes and emergence of drug resistance by protoplast regeneration. Abstr P-II-20, 4th Internatl Symp Genet Indust Microorgs, (Kyoto): 108Google Scholar
  110. 109.
    Traxler P, Schupp T, Wehrli W (1982) 16,17-dihydrorifamycin S and 16,17-dihydro-17-hydroxyrifamycin S, two novel rifamycins from a recombinant strain C5/42 of Nocardia mediterranei. J Antibiot 35: 594–601PubMedGoogle Scholar
  111. 110.
    Hopwood DA (1983) Actinomycete genetics and antibiotic production. In: LC Vining (ed): Biochemistry and genetic regulation of commercially important antibiotics. Addison Wesley, Reading, MA, 1–23Google Scholar
  112. 111.
    Okanishi M, Suzuki N, Furuta T (1996) Variety of hybrid characters among recombinants obtained by interspecific protoplast fusion in streptomycetes. Biosci Biotechnol Biochem 60:1233–1238Google Scholar
  113. 112.
    Hershberger CL (1996) Metabolic engineering of polyketide biosynthesis. Curr Opin Biotechnol 7: 560–562PubMedGoogle Scholar
  114. 113.
    Gomi S, Ikeda D, Nakamura H, Naganawa H, Yamashita F, Hotta K, Kondo S, Okami Y, Umezawa H, Iitaka Y (1984) Isolation and structure of a new antibiotic, indolizomycin, produced by a strain SK2-52 obtained by interspecies fusion treatment. J Antibiot 37: 1491–1494PubMedGoogle Scholar
  115. 114.
    Kinashi H, Shimaji M (1987) Detection of giant linear plasmids in antibiotic producing strains of Streptomyces by the OFAGE technique. J Antibiot 40: 913–916PubMedGoogle Scholar
  116. 115.
    Binnie C, Warren M, Butler MJ (1989) Cloning and heterologous expression in Streptomyces lividans of Streptomyces rimosus genes involved in oxytetracycline biosynthesis. J Bacteriol 171: 887–895PubMedGoogle Scholar
  117. 116.
    Butler MJ, Friend EJ, Hunter IS, Kaczmarek FS, Sugden DA, Warren M (1989) Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of oxytetracycline by Streptomyces rimosus. Molec Gen Genet 215: 231–238PubMedGoogle Scholar
  118. 117.
    Arisawa A, Kawamura N, Narita T, Kojima I, Okamura K, Tsunekawa H, Yoshioka T, Okamoto R (1996) Direct fermentative production of acyltylosins by genetically-engineered strains of Streptomyces fradiae. J Antibiot 49: 349–354PubMedGoogle Scholar
  119. 118.
    McDougall S, Neilands JB (1984) Plasmid-and chromosome-coded aerobactin synthesis in enteric bacteria: insertion sequences flank operon in plasmid-mediated systems. J Bacteriol 159: 300–305PubMedGoogle Scholar
  120. 119.
    Roberts M, Leavitt RW, Carbonetti NH, Ford S, Cooper RA, Williams PH (1986) RNA-DNA hybridization analysis of transcription of the plasmid ColV-K30 aerobactin gene cluster. J Bacteriol 167: 467–472PubMedGoogle Scholar
  121. 120.
    Moon YH, Tanabe T, Funahashi T, Shiuchi K, Nakao H, Yamamoto S (2004) Identification and characterization of two contiguous operons required for aerobactin transport and biosynthesis in Vibrio mimicus. Microbiol Immunol 48: 389–398PubMedGoogle Scholar
  122. 121.
    Perez-Diaz JC, Clowes RC (1980) Physical characterization of plasmids determining synthesis of a microcin which inhibits methionine synthesis in Escherichia coli. J Bacteriol 141:1015–1023PubMedGoogle Scholar
  123. 122.
    Crameri R, Davies JE, Huetter R (1986) Plasmid curing and generation of mutations induced with ethidium bromide in Streptomycetes. J Gen Microbiol 132: 819–824PubMedGoogle Scholar
  124. 123.
    Berg DE, Berg CM (1983) The prokaryotic transposable element Tn5. Bio/Technology 1: 417–435Google Scholar
  125. 124.
    McHenney MA, Baltz RH (1996) Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production. Microbiology 142: 2363–2373PubMedGoogle Scholar
  126. 125.
    Baltz RH, McHenney MA, Cantwell CA, Queener SW, Solenberg PJ (1997) Applications of transposition mutagenesis in antibiotic producing streptomyces. Ant v Leeuwenhoek 71:179–187Google Scholar
  127. 126.
    Solenberg PJ, Cantwell CA, Tietz AJ, McGilvray D, Queener SW, Baltz RH (1996) Transposition mutagenesis in Streptomyces fradiae: identification of a neutral site for the stable insertion of DNA by transposon exchange. Gene 16: 67–72Google Scholar
  128. 127.
    Ikeda H, Takada Y, Pang CH, Tanaka H, Omura S (1993) Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol 175: 2077–2082PubMedGoogle Scholar
  129. 128.
    Thompson CJ, Ward JM, Hopwood DH (1982) Cloning of antibiotic resistance and nutritional genes in streptomycetes. J Bacteriol 151: 668–677PubMedGoogle Scholar
  130. 129.
    Baltz RH, Hosted TJ (1996) Molecular genetic methods for improving secondary-metabolite production in actinomycetes. Trends Biotechnol 14: 245–250PubMedGoogle Scholar
  131. 130.
    Martin JF, Gil JA (l984) Cloning and expression of antibiotic production genes. Bio/Technology 2: 63–72Google Scholar
  132. 131.
    Liras P (1988) Cloning of antibiotic biosynthetic genes. In: JA Thompson (ed): Use of recombinant DNA techniques for improvement of fermentation organisms. CRC Press, Boca Raton, 217–253Google Scholar
  133. 132.
    Coco EA, Narva KE, Feitelson JS (1991) New classes of Streptomyces coelicolor A3(2) mutants blocked in undecylprodigiosin (Red) biosynthesis. Mol Gen Genet 227: 28–32PubMedGoogle Scholar
  134. 133.
    Chen CW, Lin HF, Kuo CL, Tsai HL, Tsai JFY (1988) Cloning and expression of a DNA sequence conferring cephamycin C production. Bio/Technology 6: 1222–1224Google Scholar
  135. 134.
    Demain AL, Elander RP (1999) The β-lactam antibiotics: past, present, and future. Ant v Leeuwenhoek 75: 5–19Google Scholar
  136. 135.
    Diez B, Gutierrez S, Barredo JL, van Solinger P, van der Voort LHM, Martin JF (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the γ-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and pcbDE genes. J Biol Chem 265: 16358–16365PubMedGoogle Scholar
  137. 136.
    Gutierrez S, Diez B, Alvarez E, Barredo JL, Martin JF (1991) Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzyl penicillin by the transformants. Mol Gen Genet 225: 56–64PubMedGoogle Scholar
  138. 137.
    Carr LG, Skatrud PL, Sheetz ME, Queener SW, Ingolia TD (1986) Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene 48: 257–266PubMedGoogle Scholar
  139. 138.
    Weigel BJ, Burgett SG, Chen VJ, Skatrud PL, Frolik CA, Queener SW, Ingolia TD (1988) Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. J Bacteriol 170: 3817–3826PubMedGoogle Scholar
  140. 139.
    Leskiw BK, Aharonowitz Y, Mevarech M, Wolfe S, Vining LC, Westlake DWS, Jensen SE (1988) Cloning and nucleotide sequence determination of the isopenicillin N synthetase gene from Streptomyces clavuligerus. Gene 62: 187–196PubMedGoogle Scholar
  141. 140.
    Garcia-Dominguez M, Liras P, Martin JF (1991) Cloning and characterization of the isopenicillin N synthase gene of Streptomyces griseus NRRL 3851 and studies of expression and complementation of the cephamycin pathway in Streptomyces clavuligerus. Antimicrob Agents Chemother 35: 44–52PubMedGoogle Scholar
  142. 141.
    Shiffman D, Mevarech M, Jensen SE, Cohen G, Aharonowitz Y (1988) Cloning and comparative analysis of the gene encoding isopenicillin N synthase in Streptomyces. Mol Gen Genet 214: 562–569PubMedGoogle Scholar
  143. 142.
    Skatrud PL, Fisher DL, Ingolia TD, Queener SW (1987) Improved transformation of Cephalosporium acremonium. In: M Alacevic, D Hranueli (eds): Genetics of industrial microorganisms, part B. Pliva, Zagreb, 111–119Google Scholar
  144. 143.
    Theilgaard HA, van den Berg MA, Mulder CA, Bovenberg RAL, Nielsen J (2001) Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 72: 379–388PubMedGoogle Scholar
  145. 144.
    Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL, Queener SW (1989) Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Bio/Technology 7: 477–485Google Scholar
  146. 145.
    Rodriguez-Saiz M, Lembo M, Bertetti L, Muraca R, Velasc, J, Malcangi A, Luis de la Fuente J, Barredo JL (2004) Strain improvement for cephalosporin production by Acremonium chrysogenum using geneticin as a suitable transformation marker. FEMS Microbiol Lett 235:43–49PubMedGoogle Scholar
  147. 146.
    Basch J, Chiang S-JD (1998) Genetic engineering approach to reduce undesirable byproducts in cephalosporin C fermentation. J Indust Microbiol Biotechnol 20: 344–353Google Scholar
  148. 147.
    Mayer H, Collins J, Wagner F (1980) Cloning of the penicillin G-acylase gene of Escherichia coli ATCC 11105 on multicopy plasmids. In: HH Weetall, GP Royer (eds): Enzyme engineering, vol. 5. Plenum, New York, 61–69Google Scholar
  149. 148.
    Elander RP (1995) Genetic engineering applications in the development of selected industrial enzymes and therapeutic proteins. In: R Sankaran, KS Manja (eds): Microbes for better living. Defense Food Research Laboratory, Mysore, India, 619–628Google Scholar
  150. 149.
    Luo H, Yu H, Li Q, Shen Z (2004) Cloning and co-expression of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase genes in Escherichia coli. Enzyme Microb Technol 35: 514–580Google Scholar
  151. 150.
    Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1: 1–11PubMedGoogle Scholar
  152. 151.
    Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55: 263–283PubMedGoogle Scholar
  153. 152.
    Kacser H, Acerenza L (1993) A universal method for achieving increases in metabolite production. Eur J Biochem 216: 361–367PubMedGoogle Scholar
  154. 153.
    Khetan A, Hu WS (1999) Metabolic engineering of antibiotic biosynthetic pathways. In: AL Demain, JE Davies (eds): Manual of industrial microbiology and biotechnology. ASM Press, Washington, DC, 717–724Google Scholar
  155. 154.
    Khetan A, Hu W-S (1999) Metabolic engineering of antibiotic biosynthesis for process improvement. In: SY Lee, ET Papoutsakis (eds): Metabolic engineering. Marcel Dekker, New York, 177–202Google Scholar
  156. 155.
    Thykaer J, Nielsen J (2003) Metabolic engineering of β-lactam production. Metab Eng 5: 56–69PubMedGoogle Scholar
  157. 156.
    Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of Escherichia coli. Science 291: 1790–1792PubMedGoogle Scholar
  158. 157.
    Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and development. Nature Rev/Drug Disc 2: 1019–1025Google Scholar
  159. 158.
    Otten SL, Stutzman-Engwall J, Hutchinson CR (1990) Cloning and expression of daunorubicin biosynthesis genes from Streptomyces peucetius and S. peucetius subsp. caisius. J Bacteriol 172: 3427–3434PubMedGoogle Scholar
  160. 159.
    Decker H, Summers RG, Hutchinson CR (1994) Overproduction of the acyl carrier protein component of a type II polyketide synthase stimulates production of tetracenomycin biosynthetic intermediates in Streptomyces glaucescens. J Antibiot 47: 54–63PubMedGoogle Scholar
  161. 160.
    Madduri K, Waldron C, Matsushima P, Broughton MC, Crawford K, Merlo DJ, Baltz RH (2001) Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa. J Indust Microbiol Biotechnol 27: 399–402Google Scholar
  162. 161.
    Butler MJ, Bruheim P, Jovetic S, Marinelli F, Postma PW, Bibb MJ (2002) Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol 68: 4731–4739PubMedGoogle Scholar
  163. 162.
    Voegtli M, Chang PC, Cohen SN (1994) afsR2: a previously undetected gene encoding a 63-amino acid protein that stimulates antibiotic production in Streptomyces lividans. Mol Microbiol 14: 643–653Google Scholar
  164. 163.
    Lee JY, Hwang YS, Kim SS, Kim ES, Choi CY (2000) Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. J Biosci Bioeng 89: 606–608PubMedGoogle Scholar
  165. 164.
    Hwang YS, Kim ES, Biro S, Choi CY (2003) Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains. Appl Environ Microbiol 69: 1263–1269PubMedGoogle Scholar
  166. 165.
    Geistlich M, Losick R, Turner JR, Rao RN (1992) Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens. MolMicrobiol 6: 2019–2029Google Scholar
  167. 166.
    Lombo F, Brana AF, Mendez C, Salas JA (1999) The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181: 642–647PubMedGoogle Scholar
  168. 167.
    Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284: 1368–1372PubMedGoogle Scholar
  169. 168.
    Mao Y, Varoglu M, Sherman DH (1999) Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 6: 251–263PubMedGoogle Scholar
  170. 169.
    Brian P, Riggle PJ, Santos RA, Champness WC (1996) Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative transduction system. J Bacteriol 178: 3221–3231PubMedGoogle Scholar
  171. 170.
    Volokhan O, Skletta H, Sekurova ON, Ellingsen TE, Zotchev SB (2005) An unexpected role for the putative 4′-phosphopantetheinyl transferase-encoding gene nysF in the regulation of nystatin biosynthesis in Streptomyces noursei ATCC 11455. FEMS Microbiol Lett 249: 57–64PubMedGoogle Scholar
  172. 171.
    Cox KL, Fishman SE, Larson JL, Stanzak R, Reynolds PA, Yeh WK, Van Frank RM, Birmingham VA, Hershberger CL, Seno ET (1987) Cloning and characterization of genes involved in tylosin biosynthesis. In: M Alacevic, D Hranueli, Z Toman (eds): Genetics of industrial microorganisms, part B. Pliva, Zagreb, 337–346Google Scholar
  173. 172.
    Fishman SE, Cox K, Larson JL, Reynolds PA, Seno ET, Yeh WK, Van Frank R, Hershberger CL (1987) Cloning genes for the biosynthesis of a macrolide antibiotic. Proc Natl Acad Sci USA 84: 8248–8252PubMedGoogle Scholar
  174. 173.
    Kennedy J, Turner G (1996) δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253: 189–197PubMedGoogle Scholar
  175. 173a.
    Matsuda A, Sugiura H, Matsuyama K, Matsumoto H, Ichikawa S, Komatsu KI (1992) Molecular cloning of acetyl coenzyme A: deacetylcephalosporin C O-acetyltransferase cDNA from Acremonium chrysogenum: sequence and expression of catalytic activity in yeast. Biochem Biophys Res Commun 182: 995–1001PubMedGoogle Scholar
  176. 173b.
    Mathison L, Soliday C, Stepan T, Aldrich T, Rambosek J (1993) Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase. Curr Genet 23: 33–41PubMedGoogle Scholar
  177. 174.
    Gutierrez S, Velasco J, Marcos AT, Fernandez FJ, Fierro F, Barredo JL, Diez B, Martin JF (1997) Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl Microbiol Biotechnol 48: 606–614PubMedGoogle Scholar
  178. 175.
    Cantwell C, Beckmann R, Whiteman P, Queener SW, Abraham EP (1992) Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc R Soc Lond (Biol) 248: 283–289Google Scholar
  179. 176.
    Crawford L, Stepan AM, Mcada PC, Rambosek JA, Conder MJ, Vinci VA, Reeves CD (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Bio/Technology 13: 58–62PubMedGoogle Scholar
  180. 177.
    Velasco J, Adrio JL, Moreno MA, Diez B, Soler G, Barredo JL (2000) Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nature Biotechnol 18: 857–861Google Scholar
  181. 178.
    Brunker P, Minas W, Kallio PT, Bailey JE (1998). Genetic engineering of an industrial strain of Saccharopolyspora erythrea for stable expression of the Vitreoscilla hemoglobin gene (vhb). Microbiology 144: 2441–2448PubMedGoogle Scholar
  182. 179.
    Minas W, Brunker P, Kallio PT, Bailey JE (1998) Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea. Biotechnol Prog 1: 561–566Google Scholar
  183. 180.
    Lombo F, Pfeifer B, Leaf T, Ou S, Kim YS, Cane DE, Licari P, Khosla C (2001) Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering. Biotechnol Prog 17: 612–617PubMedGoogle Scholar
  184. 181.
    Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52: 109–121Google Scholar
  185. 182.
    Khosla C, Bailey JE (1988) Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331: 633–635PubMedGoogle Scholar
  186. 183.
    Bro C, Nielsen J (2004) Impact of ‘ome’ analyses on inverse metabolic engineering. Metab Eng 6: 204–211PubMedGoogle Scholar
  187. 184.
    Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM(2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6: 300–312PubMedGoogle Scholar
  188. 185.
    Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58: 217–223PubMedGoogle Scholar
  189. 186.
    Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nature Biotechnol 22: 1261–1267Google Scholar
  190. 187.
    Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Boers ME, Blomquist PR, Martinez EJ, Monreal AW et al (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nature Biotechnol 21: 150–156Google Scholar
  191. 188.
    Lum AM, Huang J, Hutchinson CR, Kao CM (2004) Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metab Eng 6: 186–196PubMedGoogle Scholar
  192. 189.
    Skandalis A, Encell LP, Loeb LA (1997) Creating novel enzymes by applied molecular evolution. Chem Biol 4: 889–898PubMedGoogle Scholar
  193. 190.
    Kuchner O, Arnold FH (1997) Directed evolution of enzyme catalysis. Trends Biotechnol 15: 523–530PubMedGoogle Scholar
  194. 191.
    Arnold FH (1998) Design by directed evolution. Acc Chem Res 31: 125–131Google Scholar
  195. 192.
    Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409: 253–257PubMedGoogle Scholar
  196. 193.
    Zhao H, Chockalingam K, Chen Z (2002) Directed evolution of enzymes and pathways for industrial biocatalysis. Curr Opin Biotechnol 13: 104–110PubMedGoogle Scholar
  197. 194.
    Ness JE, Del Cardayre SB, Minshull J, Stemmer WP (2000) Molecular breeding: the natural approach to protein design. Adv Prot Chem 55: 261–292Google Scholar
  198. 195.
    Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391PubMedGoogle Scholar
  199. 196.
    Zhao H, Arnold FH (1997) Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res 25: 1307–1308PubMedGoogle Scholar
  200. 197.
    Patten PA, Howard RJ, Stemmer W (1997) Applications of DNA shuffling to pharmaceuticals and vaccines. Curr Opin Biotechnol 8: 724–733PubMedGoogle Scholar
  201. 198.
    Kurtzman AL, Govindarajan S, Vahle K, Jones JT, Heinrichs V, Patten PA (2001) Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins. Curr Opin Biotechnol 12: 361–370PubMedGoogle Scholar
  202. 199.
    Lutz S, Ostermeier M, Moore GL, Maranas CD, Benkovic SP (2001) Creating multiplecrossover DNA libraries independent of sequence identity. Proc Natl Acad Sci USA 98: 11248–11253PubMedGoogle Scholar
  203. 200.
    Marshall SH (2002) DNA shuffling: induced molecular breeding to produce new generation long-lasting vaccines. Biotechnol Adv 20: 229–238PubMedGoogle Scholar
  204. 201.
    Locher CP, Soong NW, Whalen RG, Punnonen J (2004) Development of novel vaccines using DNA shuffling and screening strategies. Curr Opin Mol Ther 6: 34–39PubMedGoogle Scholar
  205. 202.
    Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: 644–646PubMedGoogle Scholar
  206. 203.
    Hutchinson C (1998) Combinatorial biosynthesis for new drug discovery. Curr Opin Microbiol 1: 319–329PubMedGoogle Scholar
  207. 204.
    Reeves CD (2003) The enzymology of combinatorial biosynthesis. Crit Rev Biotechnol 23: 95–147PubMedGoogle Scholar
  208. 205.
    Hopwood DA, Malpartida F, Kieser HM, Ikeda H, Duncan J, Fujii I, Rudd BAM, Floss, HG, Omura S (1985) Production of ‘hybrid’ antibiotics by genetic engineering. Nature 314: 642–644PubMedGoogle Scholar
  209. 206.
    Rodriguez E, McDaniel R (2001) Combinatorial biosynthesis of antimicrobials and other natural products. Curr Opin Microbiol 4: 526–534PubMedGoogle Scholar
  210. 207.
    Donadio S, Sosio M (2003) Strategies for combinatorial biosynthesis with modular polyketide synthases. Comb Chem High Throughput Screen 6: 489–500PubMedGoogle Scholar
  211. 208.
    Kantola J, Kunnari T, Mantsala P, Ylihonko K (2003) Expanding the scope of aromatic polyketides by combinatorial biosynthesis. Comb Chem High Throughput Screen 6: 501–512PubMedGoogle Scholar
  212. 209.
    McAlpine JB, Tuan JS, Brown DP, Grebner KB, Whittern DN, Buko A, Katz L (1987) New antibiotics from genetically engineered actinomycetes. I.2-Norerythromycins, isolation and structural determinations. J Antibiot 40: 1115–1122PubMedGoogle Scholar
  213. 210.
    Epp JK, Huber MLB, Turner JR, Goodson T, Schoner BE (1989) Production of hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene 85: 293–301PubMedGoogle Scholar
  214. 211.
    Weber JM, Leung JO, Swanson SJ, Idler KB, McAlpine JB (1991) An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea. Science 252: 114–117PubMedGoogle Scholar
  215. 212.
    Donadio S, Staver MJ. McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675–679PubMedGoogle Scholar
  216. 213.
    Donadio S, McAlpine JB, Sheldon PA, Jackson MA, Katz L (1993) An erythromycin analog produced by reprogramming of polyketide synthesis. Proc Natl Acad Sci USA 90: 7119–7123PubMedGoogle Scholar
  217. 214.
    Hara O, Hutchinson CR (1992) A macrolide 3-O-acyltransferase gene from the midecamycin-producing species Streptomyces mycarofaciens. J Bacteriol 174: 5141–5144PubMedGoogle Scholar
  218. 215.
    Katz L, Donadio S (1993) Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol 47: 875–912PubMedGoogle Scholar
  219. 216.
    Hopwood DA (1993) Genetic engineering of Streptomyces to create hybrid antibiotics. Curr Opin Biotechnol 4: 531–537PubMedGoogle Scholar
  220. 217.
    McDaniel R, Ebert-Khosla S, Hopwood D, Khosla C (1993) Engineered biosynthesis of novel polyketides. Science 262: 1546–1550PubMedGoogle Scholar
  221. 218.
    McDaniel R, Ebert-Khosla S, Hopwood D, Khosla C (1993) Engineered biosynthesis of novel polyketides: manipulation and analysis of an aromatic polyketide synthase with unproven catalytic specificities. J Am Chem Soc 115: 11671–11675Google Scholar
  222. 219.
    McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Betlach M, Ashley G (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel ‘unnatural’ natural products. Proc Natl Acad Sci USA 96: 1846–1851PubMedGoogle Scholar
  223. 220.
    Khosla C, McDaniel R, Ebert-Khosla S, Torres R. Sherman DH, Bibb MJ, Hopwood DA (1993) Genetic construction and functional analysis of hybrid polyketide synthases containing heterologous acyl carrier proteins. J Bacteriol 175: 2197–2204PubMedGoogle Scholar
  224. 221.
    Decker H, Hutchinson CR (1993) Transcriptional analysis of the Streptomyces glaucescens tetracenomycin biosynthesis gene cluster. J Bacteriol 175: 3887–3892PubMedGoogle Scholar
  225. 222.
    Hutchinson CR, Fujii I (1995) Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu Rev Microbiol 49: 201–238PubMedGoogle Scholar
  226. 223.
    Tsoi CJ, Khosla C (1995) Combinatorial biosynthesis of unnatural natural products — the polyketide example. Chem Biol 2: 355–362PubMedGoogle Scholar
  227. 224.
    Kao CM, Luo GL, Katz L, Cane DE, Khosla C (1995) Manipulation of macrolide ring size by directed mutagenesis of a modular polyketide synthase. J Am Chem Soc 117: 9105–9106Google Scholar
  228. 225.
    Pacey MS, Dirlam JP, Geldart RW, Leadlay PF, McArthur HA, McCormick EL, Monday RA, O’Connell TN, Staunton J, Winchester TJ (1998) Novel erythromycins from a recombinant Saccharopolyspora erythraea strain NRRL 2338pIG1. I. Fermentation, isolation and biological activity. J Antibiot 51: 1029–1034PubMedGoogle Scholar
  229. 226.
    Wohlert SE, Blanco G, Lombo F, Fernandez E, Brana AF, Reich S, Udvarnoki G, Mendez C, Decker H, Frevert J et al (1998) Novel hybrid tetracenomycins through combinatorial biosynthesis using a glycosyltransferase encoded by the elm-genes in cosmid 16F4 and which shows a very broad sugar substrate specificity. J Amer Chem Soc 120: 10596–10601Google Scholar
  230. 227.
    Xue Q, Hutchinson CR, Santi DV (1999) A multi-plasmid approach to preparing large libraries of polyketides. Proc Natl Acad Sci USA 96: 11740–11745PubMedGoogle Scholar
  231. 228.
    Pfeifer BA, Khosla C (2001) Biosynthesis of polyketides in heterologous hosts. Microbiol Molec Biol Rev 65: 106–118Google Scholar
  232. 229.
    Trefzer A, Blanco G, Remsing L, Kunzel E, Rix U, Lipata F, Brana AF, Mendez C, Rohr J, Bechtold A et al (2002) Rationally designed glycosylated premithramycins: hybrid aromatic polyketides using genes fom three different biosynthetic pathways. J AmChem Soc 124: 6056–6062Google Scholar
  233. 230.
    Zhao L, Ahlert J, Xue Y, Thorson JS, Sherman DH, Liu H-W (1999) Engineering a methymycin/pikromycin-calicheamicin hybrid: construction of two new macrolides carrying a designed sugar moiety. J Am Chem Soc 121: 9881–9882Google Scholar
  234. 231.
    Mendez C, Salas JA (2001) Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol 19: 449–456PubMedGoogle Scholar
  235. 232.
    Bartel PL, Zhu CB, Lampel JS, Dosch DC, Connors NC, Strohl WR, Beale JM Jr, Floss HG (1990) Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosynthesis genes in streptomycetes; clarification of actinorhodin gene functions. J Bacteriol 172: 4816–4826PubMedGoogle Scholar
  236. 233.
    Strohl WR, Bartel PL, Li Y, Connors NC, Woodman RH (1991) Expression of polyketide biosynthesis and regulatory genes in heterologous streptomycetes. J Indust Microbiol 7: 163–174Google Scholar
  237. 234.
    Hwang CK, Kim HS, Hong YS, Kim YH, Hong SK, Kim SJ, Lee JJ (1995) Expresssion of Streptomyces peucetius genes for doxorubicin resistance and aklavinone 11-hydroxylase in Streptomyces galilaeus ATCC 31133 and production of a hybrid aclacinomycin. Antimicrob Agents Chemother 39: 1616–1620PubMedGoogle Scholar
  238. 235.
    Niemi J, Mantsala P (1995) Nucleotide sequences and expression of genes from Streptomyces purpurescens that cause the production of new anthracyclines in Streptomyces galilaeus. J Bacteriol 177: 2942–2945PubMedGoogle Scholar
  239. 236.
    Ylihonko K, Hakala J, Kunari T, Mantsala P (1996) Production of hybrid anthracycline antibiotics by heterologous expression of Streptomyces nogalaternogalamycin biosynthesis genes. Microbiology 142: 1965–1972PubMedGoogle Scholar
  240. 237.
    Kim HS, Hong YS, Kim YH, Yoo OJ, Lee JJ (1996) New anthracycline metabolites produced by the aklavinone 11-hydroxylase gene in Streptomyces galilaeus ATCC 31133. J Antibiot 49: 355–360PubMedGoogle Scholar
  241. 238.
    Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269: 69–72PubMedGoogle Scholar
  242. 239.
    Staunton J (1998) Combinatorial biosynthesis of erythromycin and complex polyketides. Curr Opin Chem Biol 2: 339–345PubMedGoogle Scholar
  243. 240.
    Hopwood DA (2003) The Streptomyces genome — be prepared! Nature Biotechnol 21: 505–506Google Scholar
  244. 241.
    Ikeda H, Ishikawa J, Hanamoto A, Shinose K, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnol 21: 526–531Google Scholar
  245. 242.
    Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nature Biotechnol 21: 187–190Google Scholar

Copyright information

© Birkhäuser Verlag, Basel (Switzerland) 2008

Authors and Affiliations

  • Arnold L. Demain
    • 1
  • Jose L. Adrio
    • 2
  1. 1.Research Institute for Scientists Emeriti (R.I.S.E.), HS-330Drew UniversityMadisonUSA
  2. 2.Industrial Biotechnology UnitNEURONBioPharma, S.A., Edificio BIC, Lab-GranadaSpain

Personalised recommendations