Advertisement

Evolutionary mechanisms underlying secondary metabolite diversity

  • Holger Jenke-Kodama
  • Rolf Müller
  • Elke Dittmann
Part of the Progress in Drug Research book series (PDR, volume 65)

Abstract

The enormous chemical diversity and the broad range of biological activities of secondary metabolites raise many questions about their role in nature and the specific traits leading to their evolution. The answers to these questions will not only be of fundamental interest but may also provide lessons that could help to improve the screening protocols of pharmaceutical companies and strategies for rational secondary metabolite engineering. In this review, we try to dissect evolutionary principles leading to the emergence, distribution, diversification and selection of genes involved in secondary metabolite biosyntheses. We give an overview about recent insights into the evolution of the different types of polyketide synthases (PKS) in microorganisms and plants and highlight unique mechanisms underlying polyketide diversity. Although phylogenetic and experimental data have significantly increased our knowledge about the role and evolution of secondary metabolites in the last decades there is still much dissent about the impact of natural selection. In order to understand the evolution towards metabolic diversity we therefore need more thorough investigations of the ecological role of secondary metabolites in the future.

Keywords

Secondary Metabolite Horizontal Gene Transfer Secondary Metabolism Fatty Acid Synthases Genomic Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kossel A (1891) Über die chemische Zusammensetzung der Zelle (On the chemical composition of the cell). Arch Physiol 181Google Scholar
  2. 2.
    Firn RD, Jones CG (2000) The evolution of secondary metabolism —a unifying model. Mol Microbiol 37: 989–994PubMedCrossRefGoogle Scholar
  3. 3.
    Vining LC (1992) Roles of secondary metabolites from microbes. Ciba Found Symp 171: 184–194; discussion 195-188PubMedGoogle Scholar
  4. 4.
    Altmann KH (2003) Epothilone B and its analogs —a new family of anticancer agents. Mini Rev Med Chem 3: 149–158PubMedCrossRefGoogle Scholar
  5. 5.
    Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18: 380–416PubMedCrossRefGoogle Scholar
  6. 6.
    Ohno S (1970) Evolution by gene duplication, Springer, New YorkGoogle Scholar
  7. 7.
    Jenke-Kodama H, Sandmann A, Müller R, Dittmann E (2005) Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22: 2027–2039PubMedCrossRefGoogle Scholar
  8. 8.
    Gross F, Luniak N, Perlova O, Gaitatzis N, Jenke-Kodama H, Gerth K, Gottschalk D, Dittmann E, Müller R (2006) Bacterial type III polyketide synthases: phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads. Arch Microbiol 185: 28–38PubMedCrossRefGoogle Scholar
  9. 9.
    Saxena P, Yadav G, Mohanty D, Gokhale RS (2003) A new family of type III polyketide synthases in Mycobacterium tuberculosis. J Biol Chem 278: 44780–44790PubMedCrossRefGoogle Scholar
  10. 10.
    Ueda K, Kim KM, Beppu T, Horinouchi S (1995) Overexpression of a gene cluster encoding a chalcone synthase-like protein confers redbrown pigment production in Streptomyces griseus. J Antibiot (Tokyo) 48: 638–646Google Scholar
  11. 11.
    Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39: 121–152PubMedCrossRefGoogle Scholar
  12. 12.
    Jenke-Kodama H, Börner T, Dittmann E (2006) Natural biocombinatorics in the polyketide synthase genes of the actinobacterium Streptomyces avermitilis. PLoS Comput Biol 2: 132CrossRefGoogle Scholar
  13. 13.
    Lerat E, Ochman H (2005) Recognizing the pseudogenes in bacterial genomes. Nucleic Acids Res 33: 3125–3132PubMedCrossRefGoogle Scholar
  14. 14.
    Lawrence JG, Hendrickson H (2003) Lateral gene transfer: when will adolescence end? Mol Microbiol 50: 739–749PubMedCrossRefGoogle Scholar
  15. 15.
    Bethal V (2006) Mode of action of microbial bioactive metabolites. Folia Microbiol (Praha) 51: 359–369CrossRefGoogle Scholar
  16. 16.
    Sugiyama M, Thompson CJ, Kumagai T, Suzuki K, Deblaere R, Villarroel R, Davies J (1994) Characterisation by molecular cloning of two genes from Streptomyces verticillus encoding resistance to bleomycin. Gene 151: 11–16PubMedCrossRefGoogle Scholar
  17. 17.
    Matsuo H, Mochizuki H, Davies J, Sugiyama M (1997) Production of bleomycin N-acetyltransferase in Escherichia coli and Streptomyces verticillus. FEMS Microbiol Lett 153: 83–88PubMedCrossRefGoogle Scholar
  18. 18.
    Tang GL, Cheng YQ, Shen B (2004) Leinamycin biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chem Biol 11: 33–45PubMedCrossRefGoogle Scholar
  19. 19.
    Brodhagen M, Paulsen I, Loper JE (2005) Reciprocal regulation of pyoluteorin production with membrane transporter gene expression in Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 71: 6900–6909PubMedCrossRefGoogle Scholar
  20. 20.
    Ballesta JP, Cundliffe E (1991) Site-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactum. J Bacteriol 173: 7213–7218PubMedGoogle Scholar
  21. 21.
    Liu M, Douthwaite S (2002) Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. Proc Natl Acad Sci USA 99: 14658–14663PubMedCrossRefGoogle Scholar
  22. 22.
    Antonenka U, Nolting C, Heesemann J, Rakin A (2005) Horizontal transfer of Yersinia high-pathogenicity island by the conjugative RP4 attB target-presenting shuttle plasmid. Mol Microbiol 57: 727–734PubMedCrossRefGoogle Scholar
  23. 23.
    Alarcon-Chaidez FJ, Penaloza-Vazquez A, Ullrich M, Bender CL (1999) Characterization of plasmids encoding the phytotoxin coronatine in Pseudomonas syringae. Plasmid 42: 210–220PubMedCrossRefGoogle Scholar
  24. 24.
    Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2: 414–424PubMedCrossRefGoogle Scholar
  25. 25.
    Gonzalez-Lergier J, Broadbelt LJ, Hatzimanikatis V (2005) Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways. J Am Chem Soc 127: 9930–9938PubMedCrossRefGoogle Scholar
  26. 26.
    Oliynyk M, Brown MJ, Cortes J, Staunton J, Leadlay PF (1996) A hybrid modular polyketide synthase obtained by domain swapping. Chem Biol 3: 833–839PubMedCrossRefGoogle Scholar
  27. 27.
    Stinear TP, Mve-Obiang A, Small PL, Frigui W, Pryor MJ, Brosch R, Jenkin GA, Johnson PD, Davies JK, Lee RE et al (2004) Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc Natl Acad Sci USA 101: 1345–1349PubMedCrossRefGoogle Scholar
  28. 28.
    Firn RD, Jones CG (2003) Natural products —a simple model to explain chemical diversity. Nat Prod Rep 20: 382–391PubMedCrossRefGoogle Scholar
  29. 29.
    Croteau R, Karp F, Wagschal KC, Satterwhite DM, Hyatt DC, Skotland CB (1991) Biochemical characterization of a spearmint mutant that resembles peppermint in monoterpene content. Plant Physiol 96: 744–752PubMedGoogle Scholar
  30. 30.
    Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177: 6575–6584PubMedGoogle Scholar
  31. 31.
    Durbin ML, Learn GH Jr, Huttley GA, Clegg MT (1995) Evolution of the chalcone synthase gene family in the genus Ipomoea. Proc Natl Acad Sci USA 92: 3338–3342PubMedCrossRefGoogle Scholar
  32. 32.
    Helariutta Y, Kotilainen M, Elomaa P, Kalkkinen N, Bremer K, Teeri TH, Albert VA (1996) Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification. Proc Natl Acad Sci USA 93: 9033–9038PubMedCrossRefGoogle Scholar
  33. 33.
    Tropf S, Lanz T, Rensing SA, Schroder J, Schroder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38: 610–618PubMedCrossRefGoogle Scholar
  34. 34.
    Zenk MH (1991) Chasing the enzymes of secondary metabolism: plant cell cultures as a pot of gold. Phytochemistry 30: 3861–3863CrossRefGoogle Scholar
  35. 35.
    Malik VS (1980) Microbial secondary metabolism. Trends Biochem Sci 5: 68–72CrossRefGoogle Scholar
  36. 36.
    Baba T, Schneewind O (1998) Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol 6: 66–71PubMedCrossRefGoogle Scholar
  37. 37.
    Zähner H, Anke T (1983) Evolution of secondary pathways. In: JW Bennet, E Ciegler (eds): Differentiation and secondary metabolism in fungi. Marcel Dekker, New York, 153–171Google Scholar
  38. 38.
    Davies J (1990) What are antibiotics? Archaic functions for modern activities. Mol Microbiol 4: 1227–1232PubMedCrossRefGoogle Scholar
  39. 39.
    Berenbaum MR, Robinson GE (2003) Chemical communication in a post-genomic world. Proc Natl Acad Sci USA 100Suppl 2: 14513PubMedCrossRefGoogle Scholar
  40. 40.
    Hartmann T (2004) Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta 219: 1–4PubMedCrossRefGoogle Scholar
  41. 41.
    Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33: 496–499PubMedCrossRefGoogle Scholar
  42. 42.
    Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA 99: 17025–17030PubMedCrossRefGoogle Scholar
  43. 43.
    Meiser P, Bode HB, Müller R (2006) The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci USA 103: 19128–19133PubMedCrossRefGoogle Scholar
  44. 44.
    Kehr JC, Zilliges Y, Springer A, Disney MD, Ratner DD, Bouchier C, Seeberger PH, de Marsac NT, Dittmann E (2006) A mannan binding lectin is involved in cell-cell attachment in a toxic strain of Microcystis aeruginosa. Mol Microbiol 59: 893–906PubMedCrossRefGoogle Scholar
  45. 45.
    Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53: 299–328PubMedCrossRefGoogle Scholar
  46. 46.
    Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant-insect interactions. Curr Opin Plant Biol 4: 351–358PubMedCrossRefGoogle Scholar
  47. 47.
    Frey M, Stettner C, Pare PW, Schmelz EA, Tumlinson JH, Gierl A (2000) An herbivore elicitor activates the gene for indole emission in maize. Proc Natl Acad Sci USA 97: 14801–14806PubMedCrossRefGoogle Scholar
  48. 48.
    Hilker M, Kobs C, Varama M, Schrank K (2002) Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J Exp Biol 205: 455–461PubMedGoogle Scholar
  49. 49.
    Berenbaum MR, Zangerl AR (1996) Phytochemical diversity: adaptation or random variation? In: JT Romeo, JA Saunders, P Barbosa (eds): Phytochemical diversity and redundancy in ecological interactions, Volume 30. Plenum Press, New York, 1–24Google Scholar
  50. 50.
    Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52: 1189–1208PubMedCrossRefGoogle Scholar
  51. 51.
    Jones CG, Firn RD (1991) On the evolution of plant secondary metabolite chemical diversity. Phil Trans R Soc Lon B 333: 273–280CrossRefGoogle Scholar
  52. 52.
    Owen SM, Penuelas J (2005) Opportunistic emissions of volatile isoprenoids. Trends Plant Sci 10: 420–426PubMedCrossRefGoogle Scholar
  53. 53.
    Pichersky E, Sharkey TD, Gershenzon J (2006) Plant volatiles: a lack of function or a lack of knowledge? Trends Plant Sci 11: 421; author reply 422–423PubMedCrossRefGoogle Scholar
  54. 54.
    Firn RD, Jones CG (2006) Do we need a new hypothesis to explain plant VOC emissions? Trends Plant Sci 11: 112–113; author reply 113–114PubMedCrossRefGoogle Scholar
  55. 55.
    Firn RD, Jones CG (2006) Response to Pichersky et al: Correcting a misconception about the screening hypothesis. Trends Plant Sci 11: 422CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel (Switzerland) 2008

Authors and Affiliations

  • Holger Jenke-Kodama
    • 1
  • Rolf Müller
    • 2
  • Elke Dittmann
    • 1
  1. 1.Institute of Biology, Department of Molecular EcologyHumboldt University BerlinBerlinGermany
  2. 2.Department of Pharmaceutical BiotechnologySaarland UniversitySaarbrückenGermany

Personalised recommendations