Advertisement

Drug discovery and development with plant-derived compounds

  • Olivier Potterat
  • Matthias Hamburger
Part of the Progress in Drug Research book series (PDR, volume 65)

Abstract

An overview is given on current efforts in drug development based on plant-derived natural products. Emphasis is on projects which have advanced to clinical development. Therapeutic areas covered include cancer, viral infections including HIV, malaria, inflammatory diseases, nociception and vaccine adjuvants, metabolic disorders, and neurodegenerative diseases. Aspects which are specific to plant-based drug discovery and development are also addressed, such as supply issues in the commercial development, and the Convention on Biological Diversity.

Keywords

Human Immunodeficiency Virus Drug Discovery Plant Sterol Betulinic Acid Vanilloid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huffman MA (1997) Current evidence for self-medication in primates: A multidisciplinary perspective. Yearbook Phys Anthropol 40: 171–200Google Scholar
  2. 2.
    Krief S, Huffman MA, Sevenet T, Hladik CM, Grellier P, Loiseau PM, Wrangham RW (2006) Bioactive properties of plants ingested by chimpanzees (Pan troglodytes schweinfurthii) in the Kibale National Park, Uganda. Am J Primat 68: 51–71Google Scholar
  3. 3.
    Sneader W (2005) Drug discovery — a history. Wiley, ChichesterGoogle Scholar
  4. 4.
    Hesse M (2000) Alkaloide — Fluch oder Segen der Natur? Verlag Helvetica Chimica Acta, Zürich, 322Google Scholar
  5. 5.
    Harvey AL (2002) Natural products for high-throughput screening. In: MM Iwu, JC Wootton (eds): Ethnomedicine and drug discovery, Elsevier, Amsterdam, 39–44Google Scholar
  6. 6.
    Sneader W (1996) Drug prototypes and their exploitation. Wiley, Chichester, 3–10Google Scholar
  7. 7.
    Hamburger M, Marston A, Hostettmann K (1991) Search for new drugs of plant origin. Advances in Drug Research vol. 20, Academic Press Ltd, 167–215Google Scholar
  8. 8.
    Farnsworth NR, Kaas CJ (1981) An approach utilizing information from traditional medicine to identify tumor-inhibiting plants. J Ethnopharmacol 3: 85–99PubMedGoogle Scholar
  9. 9.
    Hamburger M, Hostettmann K (1991) Bioactivity in plants: The link between phytochemistry and medicine. Phytochemistry 30: 3864–3874Google Scholar
  10. 10.
    Wolfender JL, Terreaux C, Hostettmann K (2000) The importance of LC-MS and LC-NMR in the discovery of new lead compounds from plants. Pharm Biol 38 (Suppl): 41–54Google Scholar
  11. 11.
    Wolfender JL, Ndjoko K, Hostettmann K (2003) Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectrometry: A powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr A 1000: 437–455PubMedGoogle Scholar
  12. 12.
    Bringmann G, Messer K, Wohlart M, Kraus J, Dumbuya K, Rückert M (1999) HPLC-CD on-line coupling in combination with HPLC-NMR and HPLC-MS/MS for the determination of the full absolute stereostructure of new metabolites in plant extracts. Anal Chem 71: 2678–2686Google Scholar
  13. 13.
    Niessen WMA, Lin J, Bondoux JC (2002) Developing strategies for isolation of minor impurities with mass spectrometry-directed fractionation. J Chromatogr A 970: 131–140PubMedGoogle Scholar
  14. 14.
    Reynolds WF, Enriquez RG (2002) Chosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy. J Nat Prod 65: 221–244PubMedGoogle Scholar
  15. 15.
    Potterat O, Hamburger M (2006) Natural products in drug discovery — concepts and approaches for tracking bioactivity. Curr Org Chem 10: 899–920Google Scholar
  16. 16.
    Van Middlesworth F, Cannell RJP (1998) Dereplication and partial identification of natural products, In: RJP Cannell (ed.) In: Methods in Biotechnology, vol. 4, Natural Product Isolation, Human Press Inc, Totowa, New Jersey, 279–327Google Scholar
  17. 17.
    Bindseil K, Jakupovic J, Wolf D, Lavayre J, Leboul J, vand der Pyl D (2001) Pure compound libraries; a new perspective for natural product based drug discovery. Drug Discov Today 6: 840–847PubMedGoogle Scholar
  18. 18.
    Abel U, Koch C, Speitling M, Hanske FG (2002) Modern methods to produce naturalproduct libraries. Curr Opin Chem Biol 6: 453–458PubMedGoogle Scholar
  19. 19.
    Jia Q (2003) Generating and screening a natural product library for cyclooxygenase and lipoxygenase dual inhibitors. Stud Nat Prod Chem 29 (Bioactive Natural Products (Part J)): 643–718Google Scholar
  20. 20.
    Eldridge GR, Vervoort, HC, Lee CM, Cremin PA, Williams CT, Hart SM, Goering MG, O’Neil-Johnson M, Zeng L (2002) High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal Chem 74: 3963–3971PubMedGoogle Scholar
  21. 21.
    Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnoparmacol 100: 72–79Google Scholar
  22. 22.
    Newmann DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66: 1022–1037Google Scholar
  23. 23.
    Butler MS (2005) Natural products to drugs: Natural product derived compounds in clinical trials. Nat Prod Rep 22: 162–195PubMedGoogle Scholar
  24. 24.
    Bennouna J, Campone M, Delord JP, Pinel MC (2005) Vinflunine: A novel antitubulin agent in solid malignancies. Expert Opin Inv Drug 14: 1259–1267Google Scholar
  25. 25.
    McIntyre JA, Castaner J (2004) Vinflunine: Antimitotic vinca alkaloid. Drug Future 29: 574–580Google Scholar
  26. 26.
    Wani MC, Taylor HL, Wall ME, Coggin P, McPhail AT (1971) Plant antitumor agents: VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93: 2325–2327PubMedGoogle Scholar
  27. 27.
    Horwitz SB, Cohen D, Rao S, Ringel I, Shen HJ, Yang CP (1993) Taxol; mechanisms of action and resistance. J Natl Cancer I Monogr 15: 55–61Google Scholar
  28. 28.
    Barboni L, Ballini R, Giarlo G, Appendino G, Fontana G, Bombardelli E (2005) Synthesis and biological evaluation of methoxylated analogs of the newer generation taxoids IDN5109 and IDN5390. Bioorg Med Chem Lett 15: 5182–5186PubMedGoogle Scholar
  29. 29.
    Beckers T, Mahboobi S (2003) Natural, semisynthetic and synthetic microtubule inhibitors for cancer therapy. Drug Future 28: 767–785Google Scholar
  30. 30.
    Dubois J, Guénard D, Guéritte F (2003) Recent development in antitumour taxoids. Expert Opin Ther Patents 13: 1809–1823Google Scholar
  31. 31.
    Ojima I, Geney R, Ungureanu IM, Li D (2002) Medicinal chemistry and chemical biology of new generation taxcane antitumor agents. Life 53: 269–274PubMedGoogle Scholar
  32. 32.
    Geney R, Chen J, Ojima I (2005) Recent advances in the new generation taxane anticancer agents. Med Chem 1: 125–139PubMedGoogle Scholar
  33. 33.
    Petrangolini G, Cassinelli G, Pratesi G, Tortoreto M, Favini E, Supino R, Lanzi C, Belluco S, Zunino F (2004) Antitumour and antiangiogenic effects of IDN 5390, a novel C-seco taxane, in a paclitaxel-resistant human ovarian tumour xenograft. Brit J Cancer 90: 1464–1468PubMedGoogle Scholar
  34. 34.
    Pratesi G, Laccabue D, Lanzi C, Cassinelli G, Supino R, Zucchetti M, Frapolli R, M D’Incalci E, Bombardelli E, Morazzoni P et al (2003) IDN 5390: An oral taxane candidate for protracted treatment schedules. Brit J Cancer 88: 965–972PubMedGoogle Scholar
  35. 35.
    Jordan MA, Ojima I, Rosas F, Distefano M, Wilson L, Scambia G, Ferlini C (2002) Effects of novel taxanes SB-T-2113 and IDN5109 on tubulin polymerisation and mitosis. Chem Biol 9: 93–101PubMedGoogle Scholar
  36. 36.
    Bradley MO, Swindell CS, Anthony FH, Witman PA, Devanesan P, Webb NL, Baker SD, Wolff AC, Donehower RC (2001) Tumor targeting by conjugation of DHA to paclitaxel. J Contr Rel 74: 233–236Google Scholar
  37. 37.
    Kuznetsova L, Chen J, Sun L, Wu X, Pepe A, Veith JM, Pera P, Bernacki R, Ojima I (2006) Syntheses and evaluation of novel fatty acid-second-generation taxoid conjugates as promising anticancer agents. Bioorg Med Chem Lett 16: 974–977PubMedGoogle Scholar
  38. 38.
    Stierle, A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: 214–216PubMedGoogle Scholar
  39. 39.
    Auclair C (1987) Multimodal action of antitumor agents on DNA: The ellipticine series. Arch Biochem Biophys 259: 1–14PubMedGoogle Scholar
  40. 40.
    Lee K-H, Xiao Z (2003) Lignan in treatment of cancer and other diseases. Phytochem Rev 2: 341–362Google Scholar
  41. 41.
    Kluza J, Mazinghien R, Irwin H, Hartley JA, Bailly C (2006) Relation between DNA strand breakage and apopoptic progression upon treatment of HL-60 leukemia cells with tafluposide or etoposide. Anti-Cancer Drug 17: 155–164Google Scholar
  42. 42.
    Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SPS (2005) Plant-based anticancer molecules: A chemical and biological profile of some important leads. Bioorg Med Chem 13: 5891–5908Google Scholar
  43. 43.
    Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260: 14873–14878PubMedGoogle Scholar
  44. 44.
    Demarqua D, Huchet M, Coulomb H, Lesueur-Ginot L, Lavergne O, Camara J, Kasprzyk PG, Prevost G, Bigg DCH (2004) BN80927: A novel homocamptothecin that inhibits proliferation of human tumor cells in vitro and in vivo. Cancer Res 64: 4942–4949Google Scholar
  45. 45.
    Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhoevel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A et al (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: Anticancer agents. Plant Genet Resour 3: 90–100Google Scholar
  46. 46.
    Asano T, Watase I, Sudo H, Kitajima M, Takayama H, Aimi N, Yamazaki M, Saito K (2004) Camptothecin production by in vitro cultures of Ophiorrhiza liukiuensis and O. kuroiwai. Plant Biotechnol 21: 275–281Google Scholar
  47. 47.
    Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68: 1717–1719PubMedGoogle Scholar
  48. 48.
    Hsieh HP, Liou JP, Mahindroo N (2005) Pharmaceutical design of antimitotic agents based on combrestratins. Curr Pharm Design 11: 1655–1677Google Scholar
  49. 49.
    Young SL, Chaplin DJ (2004) Combretastatin A4 phosphate: Background and current clinical status. Exp Opin Investig Drugs 13: 1171–1182Google Scholar
  50. 50.
    Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Canc 5: 423–435Google Scholar
  51. 51.
    Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA (2006). Medicinal chemistry of combretastatin A4: Present and future directions. J Med Chem 49: 3033–3044PubMedGoogle Scholar
  52. 52.
    Eichler W, Yafai Y, Wiedermann P, Fengler D (2006) Antineovascular agents in the treatment of eye diseases. Curr Pharm Design 12: 2645–2660Google Scholar
  53. 53.
    Hurry JB (1930) The woad plant and its dye. Oxford University Press, LondonGoogle Scholar
  54. 54.
    Hoessel R, Leclerc S, Endicott JA, Nobel MEM, Lawrie A, Tunnah P, Leost M, Damiens E, Marie D, Marko D et al (1999) Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1: 60–67PubMedGoogle Scholar
  55. 55.
    Jautelat R, Brumby T, Schäfer M, Briem H, Eisenbrand G, Schwahn S, Krüger M, Lücking U, Prien O, Siemeister G (2005) From the insoluble dye indirubin towards highly active soluble CDK-2 inhibitors. Chem Bio Chem 6: 531–540PubMedGoogle Scholar
  56. 56.
    Merz KH, Schwahn S, Hippe F, Mühlbeyer S, Jakobs S, Eisenbrand G (2004) Novel indirubin derivatives, promising anti-tumor agents inhibiting cyclin-dependent kinases. Int J Clin Pharm Th 42: 656–658Google Scholar
  57. 57.
    Sethi G, Ahn KS, Sandur SK, Lin X, Chaturvedi MM, Aggarwal BB (2006) Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kB signaling pathways. J Biol Chem 281: 23425–23435PubMedGoogle Scholar
  58. 58.
    Polychronopoulos P, Magiatis P, Skaltsounis AL, Myrianthopoulos V, Mikros E, Tarricone A, Musacchio A, Roe SM, Pearl L, Leost M et al (2004) Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclindependent kinases. J Med Chem 47: 935–946PubMedGoogle Scholar
  59. 59.
    Von Tappeiner H, Jesionek A (1903) Therapeutische Versuche mit fluorescierenden Stoffen. Münch Med Wochenschr 47: 2042–2044Google Scholar
  60. 60.
    Agostinis P, Vantieghem A, Merlevede W, de Witte PAM (2002) Hypericin in cancer treatment: More light on the way. Int J Biochem Cell Biol 34: 221–241PubMedGoogle Scholar
  61. 61.
    Ion RM (2000) Porphyrin for tumor destruction in photodynamic therapy. Curr Top Biophys 24: 21–34Google Scholar
  62. 62.
    Vincente MGH (2001) Porphyrin-based sensitizers in the detection and treatment of cancer: Recent progress. Curr Med Chem-Anti-Cancer Agents 1: 175–194Google Scholar
  63. 63.
    Berg K, Selbo PK, Weyergang A, Dietze A, Prasmickaite L, Bonsted A, Enesaeter BØ, Angell-Petersen E, Warloe T, Frandsen N et al (2005) Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc 218: 133–147PubMedGoogle Scholar
  64. 64.
    Pandey S, Suresh K, Dubey S, Zheng X, Chen Y, Butt CA, Morgan J, Ciesielski M, Sajjad M, Nabi HA et al (2006) PDT efficiency of phephorbide a analogs upon conjugation with cyclo(RGDfK). Abstract of Papers, 232nd ACS National Meeting, San Francisco CA, USA, 102–14 September 2006Google Scholar
  65. 65.
    Kiesslich T, Krammer B, Plaetzer K (2006) Cellular mechanisms and prospective applications of hypericin in photodynamic therapy. Curr Med Chem 13: 2189–2204PubMedGoogle Scholar
  66. 66.
    Hampson P, Chahal H, Khanim F, Hayden R, Mulder A, Assi LK, Bunce CM, Lord JM (2005) PEP005, a selective small-molecule activator of protein kinase C, has potent antileukemic activity mediated via the delta isoform of PKC. Blood 106: 1362–1368PubMedGoogle Scholar
  67. 67.
    Hampson P, Wang K, Lord JM (2005) PEP-005. Drug Future 30: 1003–1005Google Scholar
  68. 68.
    Wang X, Matta R, Shen G, Nelin LD, Liu Y (2006) Mechanism of triptolide-induced apoptosis: Effect on caspase activation and Bid cleavage and essentiality of the hydroxyl group of triptolide. J Mol Med 84: 405–415PubMedGoogle Scholar
  69. 69.
    Itokawa H, Wang X, Lee KH (2005) Homoharringtonine and related compounds. Anti-Canc Agents Nat Prod 47–70Google Scholar
  70. 70.
    Cichewicz RH, Kouzi SA (2004) Chemistry, biological activity, and chemotherapeutical potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 24: 90–114PubMedGoogle Scholar
  71. 71.
    Patocka J (2003) Biologically active pentacyclic triterpenes and their current medicine signification. J Appl Biomed 1: 7–12Google Scholar
  72. 72.
    Fresco P, Borges F, Diniz C, Marques MPM (2006) New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26: 747–766PubMedGoogle Scholar
  73. 73.
    Shukla Y, Pal SK (2004) Dietary cancer chemoprevention: an overview. Int J Hum Genet 5: 265–276Google Scholar
  74. 74.
    Harris DM, Go VLW (2006) How dietary components protect from cancer. In: AB Awad, PG Bradford (eds.) In: Nutrition and cancer prevention, CRC Press, Boca Raton, Florida, 27–58Google Scholar
  75. 75.
    Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71: 1397–1421PubMedGoogle Scholar
  76. 76.
    D’Incalci M, Steward WP, Gescher AJ (2005) Use of chemopreventive phytochemicals as antineoplastic agents. Lancet Oncol 6: 899–904PubMedGoogle Scholar
  77. 77.
    Singh S, Khar A (2006) Biological effect of curcumin and its role in cancer chemoprevention and therapy. Anti-Cancer Agents Med Chem 6: 259–270Google Scholar
  78. 78.
    Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: A short review. Life Sci 78: 2081–2087PubMedGoogle Scholar
  79. 79.
    Signorelli P, Ghidoni R (2005) Resveratrol as an anticancer nutrient: Molecular basis, open questions and promises. J Nutr Biochem 16: 449–466PubMedGoogle Scholar
  80. 80.
    Jeffery EH, Jarrell J (2001) Cruciferous vegetables and cancer prevention. In: REC Wildman (ed.) In: Handbook of nutraceuticals and functional foods. CRC Press, Boca Raton, Florida, 169–191Google Scholar
  81. 81.
    Park EJ, Pezzuto JM (2002) Botanicals in cancer chemoprevention. Cancer Metast Rev 21: 231–255Google Scholar
  82. 82.
    Greenwald P, Milner JA, Anderson DA, McDonald SS (2002) Micronutrients in cancer chemoprevention. Cancer Metast Rev 21: 217–230Google Scholar
  83. 83.
    Greenwald P (2004) Clinical trials in cancer prevention: Current results and perspectives for the future. J Nutr 134: 3507S–3512SPubMedGoogle Scholar
  84. 84.
    Bemis DL, Katz AE, Buttyan R (2006) Clinical trials of natural products as chemopreventive agents for prostate cancer Expert Opin Inv Drug 15: 1191–1200Google Scholar
  85. 85.
    Wright CW (2005) Plant-derived antimalarial agents: New leads and challenges. Phytochem Rev 4: 55–61Google Scholar
  86. 86.
    Trape JF, Pison G, Spiegel A, Enel C, Rogier C (2002) Combating malaria in Africa. Trends Parasitol 18: 224–230PubMedGoogle Scholar
  87. 87.
    Bray PG, Ward SA, O’Neil PM (2005) Quinolines and artemisinin: Chemistry, biology and history. Curr Top Microbiol 295: 3–38Google Scholar
  88. 88.
    Wright CW (2005) Traditional antimalarials and the development of novel antimalarial drugs. J Ethnoparmacol 100: 67–71Google Scholar
  89. 89.
    Robert A, Benoit-Vical F, Meunier B (2005) The key role of heme to trigger the antimalarial activity of trioxanes. Coordin Chem Rev 249: 1927–1936Google Scholar
  90. 90.
    Posner GH, O’Neil PM (2004) Knowledge of the proposed chemical mechanism of action and cytochrome P450 metabolism of antimalarial trioxane like artemisinin allows rational design of new antimalarial peroxides. Acc Chem Res 37: 397–404PubMedGoogle Scholar
  91. 91.
    Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann H-D, Chan H-W, Cheung M-K, Lam W-L, Wong H-N, Croft SL et al (2006) Artemisone — a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed 45: 2082–2088Google Scholar
  92. 92.
    Hofheinz W, Burgin H, Gocke E, Jaquet C, Masciadri R, Schmid G, Stohler H, Urwyler H (1994) Ro 42-1611 (arteflene), a new effective antimalarial: Chemical structure and biological activity. Trop Med Parasitol 45: 261–265PubMedGoogle Scholar
  93. 93.
    Ashley EA, White NJ (2005) Artemisinin-based combinations. Curr Opin Infect Dis 18: 531–536PubMedGoogle Scholar
  94. 94.
    Haynes RK (2006) From artemisinin to new antimalarials: Biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Top Med Chem 6: 509–537PubMedGoogle Scholar
  95. 95.
    Singh IP, Bharate SB, Bhutani KK (2005) Anti-HIV natural products. Curr Sci 89: 269–290Google Scholar
  96. 96.
    Joshi SP (2002) Plant products as anti-HIV agents. J Med Arom Plant Sci 24: 1006–1023Google Scholar
  97. 97.
    Meadows DC, Gervay-Hague J (2006) Current developments in HIV chemotherapy. ChemMedChem 1: 16–29PubMedGoogle Scholar
  98. 98.
    Cragg GM, Newman DJ (2003) Plants as a source of anti-cancer and anti-HIV agents. Ann Appl Biol 143: 127–133Google Scholar
  99. 99.
    Kashman Y, Gustafson KR, Fuller RW, Cardellina II JH, McMahon JB, Buckheit RW, Hughes SH, Cragg GM, Boyd MR (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 35: 2735–2743PubMedGoogle Scholar
  100. 100.
    Xu Z-Q, Barrow WW, Suling WJ, Westbrook L, Barrow E, Lin Y-M, Flavin MT (2004) Anti-HIV natural product (+)-calanolide A is active against both drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis. Bioorg Med Chem. 12: 1199–1207PubMedGoogle Scholar
  101. 101.
    Gustafson KR, Cardellina II JH, McMahon JB, Gulakowski RJ, Ishitoya J, Szallasi Z, Lewin NE, Blumberg PM, Weislow OS, Beutler JA et al (1992) A non-promoting phorbol from the Samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1. J Med Chem 35: 1978–1986PubMedGoogle Scholar
  102. 102.
    Hezareh M (2005) Prostratin as a new therapeutic agent targeting HIV viral reservoirs. Drug News Perspect 18: 496–500PubMedGoogle Scholar
  103. 103.
    Williams S, Chen LF, Kwon, H, Fenard D, Bisgrove, D, Verdin, E Greene WC (2004) Prostratin antagonizes HIV latency by activating NF-κB. J Biol Chem 279: 42008–42017PubMedGoogle Scholar
  104. 104.
    Huang L, Kashiwada Y, Cosentino LM, Fan S. Lee K-H (1994) 3′4′-Di-O-(-)-camphanoyl-(+)-cis-khellactone and related compounds: A new class of potent anti-HIV agents. Bioorg Med Chem Lett 4: 593–598Google Scholar
  105. 105.
    Zhang Q, Chen Y, Xia P, Xia Y, Xia Y, Yang ZY, Donglei Y, Morris-Natschke SL, Lee KH (2004) Anti-AIDS agents. Part 62: Anti-HIV activity of 2′substituted 4-methyl-3′4′-di-O-(-)-camphanoyl-(+)-cis-khellactone (4-methyl DCK) analogs. Bioorg Med Chem Lett 14: 5855–5877PubMedGoogle Scholar
  106. 106.
    Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee KH (2003) Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med Res Rev 23: 322–345PubMedGoogle Scholar
  107. 107.
    Huang L, Yuan X, Yu D, Lee KH, Chen CH (2005) Mechanism of action and resistant profile of anti-HIV-1 coumarin derivatives. Virology 332: 623–628PubMedGoogle Scholar
  108. 108.
    Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB, Janzen WP, Chen IS, Lee K-H (1994) Anti-aids agents, 11. Betulinic acid and platonic acid as anti-HIV principles from Syzygium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 57: 243–247PubMedGoogle Scholar
  109. 109.
    Whelan J (2004) Promising Phase I results against new HIV target. Drug Discov Today 9: 823PubMedGoogle Scholar
  110. 110.
    Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Matallana C, Castillo A, Zoumplis D, Martin DE, Orenstein JM et al (2003) PA-457: A potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 100: 13555–13560PubMedGoogle Scholar
  111. 111.
    Decosterd LA, Parson IC, Gustafson KR, Cardellina II JH, McMahon JB, Cragg GM, Murata Y, Pannell LK, Steiner JR, Clardy J et al (1993) Structure, absolute stereochemistry, and synthesis of conocurvone, a potent, novel HIV-inhibitory naphthoquinone trimer from Conospermum sp. J Am Chem Soc 115: 6673–6679Google Scholar
  112. 112.
    Boyd MR, Hallock YF, Cardellina II JH, Manfredi KP, Blunt JW, McMahon JB, Buckheit Jr RW, Bringmann G, Schaeffer M, Cragg GM et al (1994) Anti-HIV michellamines from Ancistrocladus korupensis. J Med Chem 37: 1740–1745PubMedGoogle Scholar
  113. 113.
    Sorbera, LA, Castaner J, Garcia-Capdevilla L (2005) Celgosivir. Drug Future 30: 545–552Google Scholar
  114. 114.
    Asano N (2003) Glycosidase inhibitors: Update and perspectives on practical use. Glycobiology 13: 93R–104RPubMedGoogle Scholar
  115. 115.
    Ammon HPT (2006) Boswellic acids in chronic inflammatory diseases. Planta Med 72: 1100–1116PubMedGoogle Scholar
  116. 116.
    Singh GB, Atal CK (1986) Pharmacology of an extract of salai guggal ex — Boswellia serrata, a new non-steroidal anti-inflammatory agent. Agents Actions 18: 407–412PubMedGoogle Scholar
  117. 117.
    Safayhi H, Mack T, Sabieraj J, Anazodo MI, Subrananian LR, Ammon HPT (1992) Boswellic acids: Novel, specific nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 261: 1143–1146PubMedGoogle Scholar
  118. 118.
    Safayhi H, Sailer ER, Ammon HPT (1995) Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-β-boswellic acid. Mol Pharmacol 47: 1212–1216PubMedGoogle Scholar
  119. 119.
    Singh GB, Bani S, Singh S (1996) Toxicity and safety of boswellic acids. Phytomedicine 3: 87–90Google Scholar
  120. 120.
    Glaser T, Winter S, Groscurth P, Safayhi H, Sailer ER, Ammon HPT, Schabet M, Weller M (1999) Boswellic acids and malignant glioma: Induction of apoptosis but no modulation of drug sensitivity. Brit J Cancer 80: 756–765PubMedGoogle Scholar
  121. 121.
    Winking M, Sarikaya S, Rahmanian A, Jödicke A, Böker DK (2000) Boswellic acids inhibit glioma growth: A new treatment option? J Neuro-Oncol 46: 97–103Google Scholar
  122. 122.
    Lalithakumari K, Krishnaraju AV, Sengupta K, Subbaraju GV (2006) Safety and toxicological evaluation of a novel, standardized 3-O-acetyl-11-keto-β-boswellic acid (AKBA)-enriched Boswellia serrata extract (5-Loxin R). Toxicol Mech Method 16: 199–226Google Scholar
  123. 123.
    Ammon HPT, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57: 1–7PubMedGoogle Scholar
  124. 124.
    Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: The story so far. Eur J Cancer 41: 1955–1968PubMedGoogle Scholar
  125. 125.
    Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB (2006) Curcumine down-regulates expression of cell proliferation and anti-apoptotic and metastatic gene products through suppression of IKBα kinase and Akt activation. Mol Pharmacol 69: 195–206PubMedGoogle Scholar
  126. 126.
    Shapiro H, Bruck R (2005) Therapeutic potential of curcumin in non-alcoholic steatohepatitis. Nutr Res Rev 18: 212–221Google Scholar
  127. 127.
    Holt PR, Katz S, Kirshoff R (2005) Curcumin therapy in inflammatory bowel disease: A pilot study. Digest Dis Sci 50: 2191–2193PubMedGoogle Scholar
  128. 128.
    Messeguer A, Planells-Cases R, Ferrer-Montiel A (2006) Physiology and pharmacology of the vanilloid receptor. Curr Neuropharmacol 4: 1–15Google Scholar
  129. 129.
    Appendino G, Munoz E, Fiebich BL (2003) TRPV1 (vanilloid receptor, capsaicin receptor) agonists and antagonists. Expert Opin Ther Patents 13: 1825–1837Google Scholar
  130. 130.
    Calixto JB, Kassuya CAL, André E, Ferreira J (2005) Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol Therapeut 106: 179–208Google Scholar
  131. 131.
    Bley KR (2004) Recent developments in transient receptor potential vanilloid receptor 1 agonist-based therapies. Expert Opin Inv Drug 13: 1445–1456Google Scholar
  132. 132.
    Urban L, Campbell EA, Panesar M, Patel S, Chaudhry N, Kane S, Buchheit KH, Sandells B, James IF (2000) In vivo pharmacology of SDZ-249665, a novel, non-pungent capsaicin analogue. Pain 89: 65–74PubMedGoogle Scholar
  133. 133.
    Park NS, Seong CM, Jung YS, Kim WB, Kim SH (2000) DA-5018 (Capsavanil, KR-25018). Drug Future 25: 1131–1137Google Scholar
  134. 134.
    Appendino G, Szallasi A (1997) Euphorbium: Modern research on its active principle resiniferatoxin, revives an ancient medicine. Life Sci 60: 681–696PubMedGoogle Scholar
  135. 135.
    Walker KM, Urban L, Medhurst SJ, Patel S, Panesar M, Fox AJ, McIntyre P (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 304: 56–62PubMedGoogle Scholar
  136. 136.
    Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86: 1646–1647Google Scholar
  137. 137.
    Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterisation of a cannabinoid receptor in rat brain. Mol Pharmacol 34: 605–613PubMedGoogle Scholar
  138. 138.
    Di Marzo V, Bifulco M, De Petrocelli L (2004) The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 3: 771–784Google Scholar
  139. 139.
    Lambert DM, Fowler CJ (2005) The endocannabinoid system: Drug targets, lead compounds, and potential therapeutic applications. J Med Chem 48: 5059–5087PubMedGoogle Scholar
  140. 140.
    Klein TW (2005) cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5: 400–411PubMedGoogle Scholar
  141. 141.
    Burstein S (2001) Ajulemic acid. Antiinflammatory, oncolytic. Drug Future 26: 324–345Google Scholar
  142. 142.
    Mechoulam R, Sumariwall PF, Feldmann M, Gallily R (2005) Cannabinoids in models of chronic inflammatory conditions. Phytochem Rev 4: 11–18Google Scholar
  143. 143.
    Burstein SH, Audette CA, Breuer A, Devane WA, Colodner S, Doyle SA, Mechoulam R (1992) Synthetic nonpsychotropic cannabinoids with potent antiinflammtoary, analgesic and leucocyte antiadhesion action. J Med Chem 35: 3135–3141PubMedGoogle Scholar
  144. 144.
    Fride E, Ponde D, Breuer A, Hanus L (2005) Peripheral, but not central effects of cannabidiol derivatives: mediation by CB1 and unidentified receptors. Neuropharmacology 48: 1117–1129PubMedGoogle Scholar
  145. 145.
    San Martin R, Briones R (1999) Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Econ Bot 53: 302–311Google Scholar
  146. 146.
    Kim YJ, Wang P, Navarro-Villalobos M, Rohde BD, Derryberry JM, Gin DY (2006) Synthesis of complex immunostimulants from Quillaja saponaria: Synthesis of the potent clinical immunoadjuvant QS-21Aapi. J Am Chem Soc 128: 11906–11915PubMedGoogle Scholar
  147. 147.
    Kensil CR, Patel U, Lennick M, Marciani D (1991) Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol 146: 431–437PubMedGoogle Scholar
  148. 148.
    Kensil CR (1996) Saponins as vaccine adjuvants. CritRev TherDrug 13: 1–55Google Scholar
  149. 149.
    Soltysik S, Wu JY, Recchia J, Wheeler DA, Newmann MJ, Coughlin RT, Kensil CR (1995) Structure/function studies of QS-21 adjuvant: Assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 13: 1403–1410PubMedGoogle Scholar
  150. 150.
    Liu G, Anderson C, Scaltreto H, Barbon J, Kensil CR (2002) QS-21 structure/function studies: Effect of acylation on adjuvant activity. Vaccine 20: 2808–2815PubMedGoogle Scholar
  151. 151.
    Marciani DJ, Reynolds RC, Pathak AK, Finley-Woodman K, May RD (2003) Fractionation, structural studies, and immunological characterization of the semi-synthetic Quillaja saponins derivative GPI-0100. Vaccine 21: 3961–3971PubMedGoogle Scholar
  152. 152.
    Kersten GFA, Spiekstra A, Beuvery EC, Crommelin DJA (1991) On the structure of immune-stimulating saponin-lipid complexes (iscoms). Biochim Biophys Acta 1062: 165–171PubMedGoogle Scholar
  153. 153.
    Kersten GFA, Crommelin DJA (1995) Liposomes and ISCOMS as vaccine formulations. Biochim Biophys Acta 1241: 117–138PubMedGoogle Scholar
  154. 154.
    Bays H, Stein EA (2003) Pharmacotherapy for dyslipidemia — current therapies and future agents. Expert Opin Pharmaco 4: 1901–1918Google Scholar
  155. 155.
    Urizar NL, Moore DD (2003) Gugulipid: A natural cholesterol-lowering agent. Annu Rev Nutr 23: 303–313PubMedGoogle Scholar
  156. 156.
    Satayavati GV (1988) Gum guggul (Commiphora mukul) — the success story of an ancient insight leading to a modern discovery. Indian J Med Res 87: 327–335Google Scholar
  157. 157.
    Ulbricht C, Basch E, Szapary P, Hammerness P, Axentsev S, Boon H, Kroll D, Garraway L, Vora M, Woods J (2005) Guggul for hyperlipidemia: A review by the Natural Standard Research Collaboration. Compl Ther Med 13: 279–290Google Scholar
  158. 158.
    Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, Gonzalez FJ, Heyman RA, Mangelsdorf DJ, Moore DD (2002) A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 296: 1703–1706PubMedGoogle Scholar
  159. 159.
    Patel MD, Thompson PD (2006) Phytosterols and vascular disease. Atherosclerosis 186: 12–19PubMedGoogle Scholar
  160. 160.
    Sudhop T, Lütjohann D, von Bergmann K (2005) Sterol transporters: targets of natural sterols and new lipid lowering drugs. Pharmacol Ther 105: 333–341PubMedGoogle Scholar
  161. 161.
    Kritchevsky D, Chen SC (2005) Phytosterols — health benefits and potential concerns: A review. Nutr Res 25: 413–428Google Scholar
  162. 162.
    De Melo EB, da Silveira Gomes A, Carvalho I (2006) α-and β-glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron 62: 10277–10302Google Scholar
  163. 163.
    Zou W (2005) C-glycosides and aza-C-glycosides as potential glycosidase and glycosyltransferase inhibitors. Curr Top Med Chem 5: 1363–1391PubMedGoogle Scholar
  164. 164.
    Asano N, Nash RJ, Molyneux RJ, Fleet GWJ (2000) Sugar-mimic glycosidase inhibitors: Natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron-Asymmetr 11: 1645–1680Google Scholar
  165. 165.
    Butters TD, Dwek RA, Platt FM (2005) Imino sugars inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology 15: 43R–52RPubMedGoogle Scholar
  166. 166.
    Jia W, Gao W, Tang L (2003) Antidiabetic herbal drugs officially approved in China. Phytother Res 17: 1127–1134PubMedGoogle Scholar
  167. 167.
    Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with antidiabetic potential. J Ethnopharmacol 81: 81–100PubMedGoogle Scholar
  168. 168.
    Yeh GY, Eisenberg DM, Kaptschuk TJ, Phillips RS (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26: 1277–1294PubMedGoogle Scholar
  169. 169.
    Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK (2006) Antidiabetic agents from medicinal plants. Curr Med Chem 13: 1203–1218PubMedGoogle Scholar
  170. 170.
    Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10: S2–S9PubMedGoogle Scholar
  171. 171.
    Huber A, Stuchbury G, Bürkle A, Burnell J, Münch G (2006) Neuroprotective therapies for Alzheimer’s disease. Curr Pharm Design 12: 705–717Google Scholar
  172. 172.
    Francis PT, Nordberg A, Arnold SE (2005) A preclinical view of cholinesterase inhibitors in neuroprotection: Do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol Sci 26: 104–111PubMedGoogle Scholar
  173. 173.
    Houghton PJ, Ren Y, Howes MJ (2006). Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23: 181–199PubMedGoogle Scholar
  174. 174.
    Wang R, Yan H, Tang XC (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27: 1–26PubMedGoogle Scholar
  175. 175.
    Kozikowski AP, Tückmantel W (1999) Chemstry, pharmacology, and clinical efficacy of the Chinese nootropic agent huperzine A. Acc Chem Res 32: 641–650Google Scholar
  176. 176.
    Ma X, Gang DR (2004) The Lycopodium alkaloids. Nat Prod Rep 21: 752–772PubMedGoogle Scholar
  177. 177.
    Marco-Contelles J, do Carmo Carreiras M, Rodriguez C, Villaroya M, Garcia AG (2006) Synthesis and pharmacology of galanthamine. Chem Rev 106: 116–133PubMedGoogle Scholar
  178. 178.
    Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14: 289–300PubMedGoogle Scholar
  179. 179.
    Zimmermann M, Colchiaghi F, Cattabeni F, Di Luca M (2002) Ginkgo biloba extract: From molecular mechanisms to the treatment of Alzheimer’s disease. Cell Mol Biol 48: 613–623PubMedGoogle Scholar
  180. 180.
    Christen Y (2004) Ginkgo biloba and neurodegenerative disorders. Frontiers Biosci 9: 3091–3104Google Scholar
  181. 181.
    Gertz HJ, Kiefer M (2004) Review about Ginkgo biloba special extract EGb 761 (Ginkgo). Curr Pharm Design 10: 261–264Google Scholar
  182. 182.
    Andrieu S, Gilette S, Amouyal K, Nourashemi F, Reynish W, Ousset PJ, Albarede JL, Vellas B, Grandjean H (2003) Association of Alzheimer’s disease onset with Ginkgo biloba and other symptomatic cognitive treatments in a population of women aged 75 years and older from the EPIDOS study. J Gerontol A Biol Sci Med Sci 58: 372–377PubMedGoogle Scholar
  183. 183.
    NG TP, Chiam PC, Lee T, Chua HC, Lim L, Kua EH (2006) Curry consumption and cognition function in the elderly. Am J Epidemiol 164: 898–906PubMedGoogle Scholar
  184. 184.
    Mancuso C, Scapagnini G, Curro D, Stella AMG, De marco C, Butterfield DA, Calabrese V (2007). Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Frontiers Biosci 12: 1107–1123Google Scholar
  185. 185.
    Lim GP, Chu T, Yang FS, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21: 8370–8377PubMedGoogle Scholar
  186. 186.
    Yang FS, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2006) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280: 5892–5901Google Scholar
  187. 187.
    Langlois N, Gueritte F, Langlois Y, Potier P (1976) Application of a modification of Polonovski reaction to synthesis of vinblastine-type alkaloids. J Am Chem Soc 98: 7017–7024PubMedGoogle Scholar
  188. 188.
    Mishra P, Uniyal GC, Sharma S, Kumar S (2001) Pattern of diversity of morphological and alkaloid yield related traits among periwinkle Catharanthus roseus accessions collected from and around Indian subcontinent. Genet Resour Crop Ev 48: 273–286Google Scholar
  189. 189.
    Schmid W, Balz JP (2005) Cultivation of Ginkgo biloba L. on three continents. Acta Horticult 676: 177–180Google Scholar
  190. 190.
    Suffness M (1993) Taxol — from discovery to therapeutic use. Annu Rep Med Chem 28: 305–314Google Scholar
  191. 191.
    Zhong JJ (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94: 591–599PubMedGoogle Scholar
  192. 192.
    Tabata H (2006) Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr Drug Target 7: 453–461Google Scholar
  193. 193.
    Farina V, Brown JD (2006) Tamiflu: the supply problem. Angew Chem Int Ed 45: 2–7Google Scholar
  194. 194.
    Farkya S, Bisaria VS, Srivastava AK (2004) Biotechnological aspects of the production of the anticancer drug podophyllotoxin. Appl Microbiol Biot 65: 504–519Google Scholar
  195. 195.
    Bedir E, Tellez M, Lata H, Khan I, Cushman KE, Moraes RM (2006) Post-harvest and scale up extraction of American mayapple leaves for podophyllotoxin production. Ind Crop Prod 24: 3–7Google Scholar
  196. 196.
    Soeharto DD, Gyllenhaal C, Fong HHS, Xuan LT, Hiep NT, Hung NV, Bich TQ, Southavong B, Sydara K, Pezzuto JM (2004) The UIC ICBG (University of Illinois at Chicago International Cooperative Biodiversity Group) memorandum of agreement: A model of benefit-sharing arrangement in natural products drug discovery and development. J Nat Prod 67: 294–299Google Scholar
  197. 197.
    Iwu MM (1996) Implementing the biodiversity treaty: How to make international cooperative agreements work. Trends Biotechnol 14: 78–83Google Scholar
  198. 198.
    Anon. (1994) ‘Bio-piracy’ costs developing world 5 billion a year. Scrip 1980: 19Google Scholar
  199. 199.
    Rausser GC, Small AA (2000) Valuing research leads: Bioprospecting and the conservation of genetic resources. J Polit Econ 108: 173–206Google Scholar
  200. 200.
    Dalton R (2006) Cashing in on the rich coast. Nature 442: 567–569Google Scholar
  201. 201.
    Coley PD, Heller MV, Aizprua R, Arauz B, Flores N, Correa M, Gupta M, Solis PN, Ortega-Barria E, Romero LI et al (2003) Using ecological criteria to design plant collection strategies for drug discovery. Front Ecol Environ 1: 421–428Google Scholar
  202. 202.
    Balandrin MF, Kinghorn AD, Farnsworth NR (1993) Plant-derived natural products in drug discovery and development — an overview. ACS Symp Series 534: 2–12Google Scholar
  203. 203.
    Kinghorn AD (2001) Pharmacognosy in the 21st century. J Pharm Pharmacol 53: 135–148Google Scholar
  204. 204.
    Shu YZ (1998) Recent natural products based drug development: A pharmaceutical industry perspective. J Nat Prod 61: 1053–1071PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel (Switzerland) 2008

Authors and Affiliations

  • Olivier Potterat
    • 1
  • Matthias Hamburger
    • 1
  1. 1.Institute of Pharmaceutical BiologyUniversity of BaselBaselSwitzerland

Personalised recommendations