Skip to main content

Continuity and Schatten Properties for Pseudo-differential Operators on Modulation Spaces

  • Chapter

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 172))

Abstract

Let M p,q(ω) be the modulation space with parameters p, q and weight function ω. We prove that if tR, p, p j, q, q j ∈ [1, ∞], ω 1, ω 2 and ω are appropriate, and aM p,q(ω) , then the pseudo-differential operator a t(x,D) is continuous from M p1,q1(ω) to M p2,q2(ω) . If in addition p j = q j = 2, then we establish necessary and sufficient conditions on p and q in order to a t(x,D) should be a Schatten-von Neumann operator of certain order.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin, Heidelberg, New York, 1976.

    MATH  Google Scholar 

  2. M.S. Birman and M.Z. Solomyak, Estimates for the singular numbers of integral operators (Russian), Uspehi Mat. Nauk. 32, (1977), 17–84.

    MATH  MathSciNet  Google Scholar 

  3. P. Boggiatto, Localization operators with L p symbols on modulation spaces, in Advances in Pseudo-differential Operators, Editors: R. Ashino, P. Boggiatto and M.W. Wong, Birkhäuser, Basel, 2004, 149–163.

    Google Scholar 

  4. P. Boggiatto, E. Cordero and K. Gröchenig, Generalized anti-Wick operators with symbols in distributional Sobolev spaces, Integral Equations Operator Theory 48 (2004), 427–442.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Boggiatto and J. Toft, Embeddings and compactness for generalized Sobolev-Shubin spaces and modulation spaces, Applic. Anal. 84 (2005), 269–282.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Boulkhemair, L 2 estimates for pseudodifferential operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995), 155–183.

    MATH  MathSciNet  Google Scholar 

  7. A. Boulkhemair, Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators, Math. Res. Letters 4 (1997), 53–67.

    MATH  MathSciNet  Google Scholar 

  8. A. Boulkhemair, L 2 estimates for Weyl quantization, J. Funct. Anal. 165 (1999), 173–204.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Cordero and K. Gröchenig, Time-frequency analysis of localization operators, J. Funct. Anal. 205 (2003), 107–131.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Czaja and Z. Rzeszotnik, Pseudodifferential operators and Gabor frames: spectral asymptotics, Math. Nachr. 233/234 (2002), 77–88.

    Article  MathSciNet  Google Scholar 

  11. M. Dimassi and J. Sjöstrand Spectral Asymptotics in the Semi-Classical Limit, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, 1999.

    MATH  Google Scholar 

  12. H.G. Feichtinger Un espace de Banach de distributions tempérés sur les groupes localement compacts abéliens (French), C. R. Acad. Sci. Paris Sér. A-B 290 17 (1980), A791–A794.

    MathSciNet  Google Scholar 

  13. H.G. Feichtinger Banach spaces of distributions of Wiener’s type and interpolation, in Proc. Conf. Oberwolfach, Functional Analysis and Approximation, August 1980, Editors: P. Butzer, B. Sz.-Nagy and E. Görlich, Int. Ser. Num. Math. 69 Birkhäuser Verlag, Basel, Boston, Stuttgart, 1981, 153–165.

    Google Scholar 

  14. H.G. Feichtinger, Banach convolution algebras of Wiener’s type, in Proc. Functions, Series, Operators in Budapest, Colloquia Math. Soc. J. Bolyai, North Holland Publ. Co., Amsterdam, Oxford, New York, 1980.

    Google Scholar 

  15. H.G. Feichtinger, Modulation spaces on locally compact abelian groups, in Wavelets and their Applications, Editors: M. Krishna, R. Radha and S. Thangavelu, Allied Publishers, 2003, 99–140.

    Google Scholar 

  16. H.G. Feichtinger, Atomic characterizations of modulation spaces through Gabor-type representations, Rocky Mountain J. Math. 19 (1989), 113–126.

    MATH  MathSciNet  Google Scholar 

  17. H.G. Feichtinger and P. Gröbner, Banach spaces of distributions defined by decomposition methods, I, Math. Nachr. 123 (1985), 97–120.

    Article  MATH  MathSciNet  Google Scholar 

  18. H.G. Feichtinger and K.H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), 307–340.

    Article  MATH  MathSciNet  Google Scholar 

  19. H.G. Feichtinger and K.H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. Math. 108 (1989), 129–148.

    Article  MathSciNet  Google Scholar 

  20. H.G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J. Funct. Anal. 146 (1997), 464–495.

    Article  MATH  MathSciNet  Google Scholar 

  21. H.G. Feichtinger and W. Kozek, Operator quantization on lca groups, in Gabor Analysis and Algorithms, Theory and Applications, Editors: H.G. Feichtinger and T. Strohmer, Birkhäuser, Boston, Basel, Berlin, 1998.

    Google Scholar 

  22. G.B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, Princeton, 1989.

    MATH  Google Scholar 

  23. I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Non-Selfadjoint Operators in Hilbert Space (Russian), Izdat. Nauka, Moscow, 1965.

    Google Scholar 

  24. K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math. 112 (1991), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  25. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.

    MATH  Google Scholar 

  26. K. Gröchenig and C. Heil, Modulation spaces and pseudo-differential operators, Integral Equations Operator Theory 34 (1999), 439–457.

    Article  MathSciNet  Google Scholar 

  27. K. Gröchenig and C. Heil, Modulation spaces as symbol classes for pseudodifferential operators, in Wavelets and their Applications, Editors: M. Krishna, R. Radha and S. Thangavelu, Allied Publishers, 2003, 151–170.

    Google Scholar 

  28. L. Hörmander, The Analysis of Linear Partial Differential Operators I, III, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983, 1985.

    Google Scholar 

  29. C. Heil, J. Ramanathan and P. Topiwala, Singular values of compact pseudodifferential operators, J. Funct. Anal. 150 (1997), 426–452.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Labate, Pseudodifferential operators on modulation spaces, J. Math. Anal. Appl. 262 (2001), 242–255.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Pilipović and N. Teofanov, Wilson bases and ultramodulation spaces, Math. Nachr. 242 (2002), 179–196.

    Article  MathSciNet  Google Scholar 

  32. S. Pilipović and N. Teofanov, On a symbol class of elliptic pseudodifferential operators, Bull. Acad. Serb. Sci. Arts 27 (2002), 57–68.

    Google Scholar 

  33. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, London, New York, 1979.

    MATH  Google Scholar 

  34. R. Rochberg and K. Tachizawa, Pseudo-differential operators, Gabor frames and local trigonometric bases, in Gabor Analysis and Algorithms, Editors: H.G. Feichtinger and T. Strohmer, Birkhäuser, Boston, 1998, 171–192.

    Google Scholar 

  35. R. Schatten, Norm Ideals of Completely Continuous Operators, Springer, Berlin, 1960.

    MATH  Google Scholar 

  36. B.W. Schulze, Boundary Value Problems and Singular Pseudo-differential Operators, Wiley, Chichester, 1998.

    MATH  Google Scholar 

  37. B.W. Schulze and N.N. Tarkhanov, Pseudodifferential operators with operator-valued symbols, in Israel Math. Conf. Proc. 16, 2003.

    Google Scholar 

  38. M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  39. B. Simon, Trace Ideals and their Applications, Cambridge University Press, Cambridge, London, New York, Melbourne, 1979.

    MATH  Google Scholar 

  40. J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Letters 1 (1994), 185–192.

    MATH  Google Scholar 

  41. J. Sjöstrand, Wiener type algebras of pseudodifferential operators, in Séminaire Equations aux Dérivées Partielles, Ecole Polytechnique, 1994/1995, Exposé n o IV.

    Google Scholar 

  42. K. Tachizawa, The boundedness of pseudo-differential operators on modulation spaces, Math. Nachr. 168 (1994), 263–277.

    MATH  MathSciNet  Google Scholar 

  43. N. Teofanov, Ultramodulation Spaces and Pseudodifferential Operators, Endowment Andrejević, Beograd, 2003.

    Google Scholar 

  44. J. Toft, Continuity and Positivity Problems in Pseudo-differential Calculus, Thesis, Department of Mathematics, University of Lund, Lund, 1996.

    Google Scholar 

  45. J. Toft, Subalgebras to a Wiener type algebra of pseudo-differential operators, Ann. Inst. Fourier (Grenoble) 51 (2001), 1347–1383.

    MATH  MathSciNet  Google Scholar 

  46. J. Toft, Continuity properties for non-commutative convolution algebras with applications in pseudo-differential calculus, Bull. Sci. Math. 126 (2002), 115–142.

    Article  MATH  MathSciNet  Google Scholar 

  47. J. Toft, Modulation spaces and pseudo-differential operators, Research Report, Blekinge Institute of Technology, Karlskrona, 2002.

    Google Scholar 

  48. J. Toft, Continuity properties for modulation spaces with applications to pseudodifferential calculus, I, J. Funct. Anal. 207 (2004), 399–429.

    Article  MATH  MathSciNet  Google Scholar 

  49. J. Toft, Continuity properties for modulation spaces with applications to pseudodifferential calculus, II, Ann. Global Anal. Geom. 26 (2004), 73–106.

    Article  MATH  MathSciNet  Google Scholar 

  50. J. Toft, Convolution and embeddings for weighted modulation spaces, in Advances in Pseudo-differential Operators, Editors: R. Ashino, P. Boggiatto and M.W. Wong, Birkhäuser, Basel 2004, 165–186.

    Google Scholar 

  51. J. Toft, Continuity and Schatten-von Neumann properties for pseudo-differential operators on modulation spaces, Research Report, Växjö University, Växjö, 2005.

    Google Scholar 

  52. J. Toft, Continuity and Schatten properties for Toeplitz operators on modulation spaces, in Modern Trends in Pseudo-differential Operators, Editors: J. Toft, M.W. Wong and H. Zhu, Birkhäuser, Basel, this Volume, 313–328.

    Google Scholar 

  53. H. Triebel, Modulation spaces on the Euclidean n-space, Z. Anal. Anwendungen 2 (1983), 443–457.

    MATH  MathSciNet  Google Scholar 

  54. M.W. Wong, Weyl Transforms, Springer-Verlag, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Toft, J. (2006). Continuity and Schatten Properties for Pseudo-differential Operators on Modulation Spaces. In: Toft, J. (eds) Modern Trends in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol 172. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8116-5_11

Download citation

Publish with us

Policies and ethics