Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 254))

  • 1712 Accesses

Abstract

We show in Section 6.1 that the asymptotic expansion of the Bergman kernel still holds on compact sets of certain non-compact complete manifolds. In this way we can obtain another proof of some of the holomorphic Morse inequalities. As a corollary, we re-prove the Shiffman-Ji-Bonavero-Takayama criterion for Moishezon manifolds in Section 6.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.5 Bibliographic notes

  1. A. Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France 91 (1963), 1–38. Théorème 6

    MATH  MathSciNet  Google Scholar 

  2. A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. 69 (1959), 713–717.

    Article  MathSciNet  Google Scholar 

  3. A. Andreotti and Y.T. Siu, Projective embeddings of pseudoconcave spaces, Ann. Sc. Norm. Sup. Pisa 24 (1970), 231–278. Theorem 4.1

    MATH  MathSciNet  Google Scholar 

  4. A. Andreotti and G. Tomassini, Some remarks on pseudoconcave manifolds, Essays on Topology and Related Topics dedicated to G. de Rham (A. Haefinger and R. Narasimhan, eds.), Springer-Verlag, 1970, pp. 85–104. Theorem 3, p.97

    Google Scholar 

  5. R. Bott, On a theorem of Lefschetz, Mich. Math. J. 6 (1959), 211–216.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974–1975; Équations aux derivées partielles linéaires et non linéaires, Centre Math., École Polytech., Paris, 1975, pp. Exp. No. 9, 14. p. 5

    Google Scholar 

  7. L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Journées: Équations aux Dérivées Partielles de Rennes (1975), Soc. Math. France, Paris, 1976, pp. 123–164. Astérisque, No. 34–35.

    Google Scholar 

  8. C. Bănică and O. Stănăşilă, Algebraic methods in the global theory of complex spaces, Wiley, New York, 1976. Prop. VI.2.7

    Google Scholar 

  9. D.M. Burns, Global behavior of some tangential Cauchy-Riemann equations, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977), Lecture Notes in Pure and Appl. Math., vol. 48, Dekker, New York, 1979, pp. 51–56.

    Google Scholar 

  10. J. Carlson and P. Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math. 95 (1972), 557–584. § 2

    Article  MathSciNet  Google Scholar 

  11. M. Coltoiu, Complete locally pluripolar sets, J. Reine Angew. Math. 412 (1990), 108–112.

    MATH  MathSciNet  Google Scholar 

  12. M. Coltoiu and M. TibĂr, Steinness of the universal covering of the complement of a 2-dimensional complex singularity, Math. Ann. 326 (2003), no. 1, 95–104.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math. (2) 111 (1980), no. 3, 435–476.

    Article  MathSciNet  Google Scholar 

  14. P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. § 10

    MATH  MathSciNet  Google Scholar 

  15. C.L. Epstein and G.M. Henkin, Can a good manifold come to a bad end?, Tr. Mat. Inst. Steklova 235 (2001), no. Anal. i Geom. Vopr. Kompleks. Analiza, 71–93. Theorem 2

    MathSciNet  Google Scholar 

  16. W. Fulton and R. Lazarsfeld, Connectivity and its applications in algebraic geometry, Algebraic geometry (Chicago, Ill., 1980), Lecture Notes in Math., vol. 862, Springer, Berlin, 1981, pp. 26–92.

    Chapter  Google Scholar 

  17. C. Grant and P. Milman, Metrics for singular analytic spaces, Pacific J. Math. 168 (1995), no. 1, 61–156.

    MATH  MathSciNet  Google Scholar 

  18. C. Grant Melles and P. Milman, Classical Poincaré metric pulled back off singularities using a Chow-type theorem and desingularization, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 4, 689–771.

    MATH  MathSciNet  Google Scholar 

  19. H. Grauert, Theory of q-convexity and q-concavity, Several Complex Variables VII (H. Grauert, Th. Peternell, and R. Remmert, eds.), Encyclopedia of mathematical sciences, vol. 74, Springer Verlag, 1994. p. 273

    Google Scholar 

  20. A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, North-Holland, Amsterdam, 1968.

    Google Scholar 

  21. R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., vol. 156, Springer-Verlag, Berlin, 1970.

    MATH  Google Scholar 

  22. _____, Algebraic Geometry, Springer-Verlag, Berlin, 1977.

    MATH  Google Scholar 

  23. R. Harvey and B. Lawson, On boundaries of complex varieties I, Ann. of Math.. 102 (1975), 233–290.

    Article  MathSciNet  Google Scholar 

  24. D. Heunemann, Extension of the complex structure from Stein manifolds with strictly pseudoconvex boundary, Math. Nachr. 128 (1986), 57–64. Theorem 0.2

    Article  MATH  MathSciNet  Google Scholar 

  25. J.J. Kohn, The range of the tangential Cauchy-Riemann operators, Duke Math. 53 (1986), 525–545.

    Article  MATH  MathSciNet  Google Scholar 

  26. J.J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math. 81 (1965), 451–472.

    Article  MathSciNet  Google Scholar 

  27. J. Kollár, Shafarevich maps and automorphic forms, Princeton Univ. Press, Princeton, NJ, 1995.

    MATH  Google Scholar 

  28. R. Lazarsfeld, Positivity in algebraic geometry. I, II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 48-49, Springer-Verlag, Berlin, 2004.

    Google Scholar 

  29. S. Lefschetz, L’analysis situs et la géométrie algébrique, Dunod, Paris, 1924.

    MATH  Google Scholar 

  30. L. Lempert, On three-dimensional Cauchy-Riemann manifolds, J. Amer. Math. Soc. 5 (1992), no. 4, 923–969.

    Article  MATH  MathSciNet  Google Scholar 

  31. _____-, Embeddings of three-dimensional Cauchy-Riemann manifolds, Math. Ann. 300 (1994), no. 1, 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  32. _____-, Algebraic approximations in analytic geometry, Invent. Math. 121 (1995), no. 2, 335–353.

    Article  MATH  MathSciNet  Google Scholar 

  33. X. Ma and G. Marinescu, Generalized Bergman kernels on symplectic manifolds, C. R. Acad. Sci. Paris 339 (2004), no. 7, 493–498, The full version: math.DG/0411559, Adv. in Math.

    MATH  MathSciNet  Google Scholar 

  34. G. Marinescu and T.-C. Dinh, On the compactification of hyperconcave ends and the theorems of Siu-Yau and Nadel, Invent. Math. 164 (2006), 233–248.

    Article  MATH  MathSciNet  Google Scholar 

  35. G. Marinescu and N. Yeganefar, Embeddability of some strongly pseudoconvex CR manifolds, to appear in Trans. Amer. Math. Soc., Preprint available at arXiv:math.CV/0403044, 2004.

    Google Scholar 

  36. J. Milnor, Morse Theory, Ann. Math. Studies, vol. 51, Princeton University Press, 1963.

    Google Scholar 

  37. N. Mok, Compactification of complete Kähler surfaces of finite volume satisfying certain curvature conditions, Ann. Math. 129 (1989), 383–425.

    Article  MathSciNet  Google Scholar 

  38. A. Nadel and H. Tsuji, Compactification of complete Kähler manifolds of negative Ricci curvature, J. Differential Geom. 28 (1988), no. 3, 503–512. Lemma 2.1

    MATH  MathSciNet  Google Scholar 

  39. T. Napier and M. Ramachandran, The L 2-method, weak Lefschetz theorems and the topology of Kähler manifolds, JAMS 11 (1998), no. 2, 375–396.

    Article  MATH  MathSciNet  Google Scholar 

  40. M.V. Nori, Zariski’s conjecture and related problems, Ann. Sci. École Norm. Sup. 16 (1983), 305–344.

    MATH  MathSciNet  Google Scholar 

  41. T. Ohsawa, Holomorphic embedding of compact s.p.c. manifolds into complex manifolds as real hypersurfaces, Differential geometry of submanifolds (Kyoto, 1984), Lecture Notes in Math., vol. 1090, Springer, Berlin, 1984, pp. 64–76.

    Chapter  Google Scholar 

  42. H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex. Manifolds (Minneapolis), Springer-Verlag, New York, 1965, pp. 242–256. Th. 3, p. 245

    Google Scholar 

  43. Y.T. Siu and S.T. Yau, Compactification of negatively curved complete Kähler manifolds of finite volume, Ann. Math. Stud., vol. 102, Princeton Univ. Press, 1982, pp. 363–380.

    MathSciNet  Google Scholar 

  44. R. Todor, I. Chiose, and G. Marinescu, Morse inequalities for covering manifolds, Nagoya Math. J. 163 (2001), 145–165.

    MATH  MathSciNet  Google Scholar 

  45. H. Wu, Negatively curved Kähler manifolds, Notices. Amer. Math. Soc. 14 (1967), 515.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag AG

About this chapter

Cite this chapter

(2007). Bergman Kernel on Non-compact Manifolds. In: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol 254. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8115-8_7

Download citation

Publish with us

Policies and ethics