Skip to main content

Holomorphic Morse Inequalities on Non-compact Manifolds

  • Chapter
Holomorphic Morse Inequalities and Bergman Kernels

Part of the book series: Progress in Mathematics ((PM,volume 254))

Abstract

We start by the L 2 Hodge theory on non-compact Hermitian manifolds in Section 3.1. In Section 3.2, we prove holomorphic Morse inequalities for the L 2-cohomology in a quite general context, namely, when the fundamental estimate (3.2.2) holds. This gives a fairly general method which may be applied in many situations. The main idea, going back to Witten, is to show that the spectral spaces of the Laplacian, corresponding to small eigenvalues, inject in the spectral spaces of the Laplacian with Dirichlet boundary conditions on a smooth relatively domain, The asymptotic of the latter operator is calculated in Theorem 3.2.9. For a compact manifold we recover of course Theorem 1.7.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.7 Bibliographic notes

  1. A. Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France 91 (1963), 1–38.

    MATH  MathSciNet  Google Scholar 

  2. A. Andreotti and H. Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259.

    MATH  MathSciNet  Google Scholar 

  3. A. Andreotti and G. Tomassini, Some remarks on pseudoconcave manifolds, Essays on Topology and Related Topics dedicated to G. de Rham (A. Haefinger and R. Narasimhan, eds.), Springer-Verlag, 1970, pp. 85–104.

    Google Scholar 

  4. A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ. Math. 25 Lemma 4, p. 92–93. (1965), 81–130; Erratum: 27 (1965), 153–155.

    Article  Google Scholar 

  5. M.F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Astérisque 32–33 (1976), 43–72. §4.

    MathSciNet  Google Scholar 

  6. W. Baily, Holomorphic Morse inequalities on manifolds with boundary, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 4, 1055–1103.

    MathSciNet  Google Scholar 

  7. Th. Bouche, Inegalités de Morse pour la d″-cohomologie sur une variété non-compacte, Ann. Sci. Ecole Norm.Sup. 22 (1989), 501–513.

    MATH  MathSciNet  Google Scholar 

  8. J. Brüning and X. Ma, An anomaly formula for Ray-Singer metrics on manifolds with boundary, Geom. Funct. Anal. 16 (2006), 767–837, announced in C. R. Math. Acad. Sci. Paris 335 (2002), no. 7, 603—608. § 3.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Dingoyan, Monge-Ampère currents over pseudoconcave spaces., Math. Ann. 320 (2001), no. 2, 211–238.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Feller, An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., New York, 1971. XIII

    MATH  Google Scholar 

  11. G. Fischer, Complex analytic geometry, Lect. Notes, vol. 538, Springer-Verlag, 1976. p. 180.

    Google Scholar 

  12. G.B. Folland and J.J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J., 1972, Annals of Mathematics Studies, No. 75.

    MATH  Google Scholar 

  13. C. Grant and P. Milman, Metrics for singular analytic spaces, Pacific J. Math. 168 (1995), no. 1, 61–156.

    MATH  MathSciNet  Google Scholar 

  14. C. Grant Melles and P. Milman, Classical Poincaré metric pulled back off singularities using a Chow-type theorem and desingularization, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 4, 689–771.

    MATH  MathSciNet  Google Scholar 

  15. L. Hörmander, L 2-estimates and existence theorem for the \( \bar \partial \)-operator, Acta Math. 113 (1965), 89–152. Prop. 1.2.4.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds I, Ann. Math. 78 (1963), 112–148.

    Article  MathSciNet  Google Scholar 

  17. J. Kollár, Shafarevich maps and automorphic forms, Princeton Univ. Press, Princeton, NJ, 1995.

    MATH  Google Scholar 

  18. X. Ma and G. Marinescu, The Spinc Dirac operator on high tensor powers of a line bundle, Math. Z. 240 (2002), no. 3, 651–664.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Marinescu, Morse inequalities for q-positive line bundles over weakly 1-complete manifolds, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 8, 895–899.

    MATH  MathSciNet  Google Scholar 

  20. _____, Asymptotic Morse Inequalities for Pseudoconcave Manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1996), no. 1, 27–55.

    MATH  MathSciNet  Google Scholar 

  21. _____, A criterion for Moishezon spaces with isolated singularities, Annali di Matematica Pura ed Applicata 185 (2005), no. 1, 1–16.

    Article  MathSciNet  Google Scholar 

  22. G. Marinescu, R. Todor, and I. Chiose, L 2 holomorphic sections of bundles over weakly pseudoconvex coverings, Geom. Dedicata 91 (2002), 23–43.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Nadel and H. Tsuji, Compactification of complete Kähler manifolds of negative Ricci curvature, J. Differential Geom. 28 (1988), no. 3, 503–512. Th. 4.1.

    MATH  MathSciNet  Google Scholar 

  24. T. Ohsawa, Isomorphism theorems for cohomology groups of weakly 1-complete manifolds, Publ. Res. Inst. Math. Sci. 18 (1982), 191–232. p. 218.

    MATH  MathSciNet  Google Scholar 

  25. L. Saper, L 2-cohomology and intersection homology of certain algebraic varieties with isolated singularities, Invent. Math. 82 (1985), no. 2, 207–255.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. Schwartz, Théorie des distributions, Actualités Sci. Ind., no. 1091, Hermann & Cie., Paris, 1950.

    Google Scholar 

  27. M. Shubin, Semi-classical asymptotics on covering manifolds and Morse inequalities, Geom. Funct. Analysis 6 (1996), 370–409.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Takayama, Adjoint linear series on weakly 1-complete manifolds I: Global projective embedding, Math.Ann. 311 (1998), 501–531. Theorem 1.2.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Todor, I. Chiose, and G. Marinescu, Morse inequalities for covering manifolds, Nagoya Math. J. 163 (2001), 145–165.

    MATH  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag AG

About this chapter

Cite this chapter

(2007). Holomorphic Morse Inequalities on Non-compact Manifolds. In: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol 254. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8115-8_4

Download citation

Publish with us

Policies and ethics