Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 254))

  • 1803 Accesses

Abstract

In this chapter we start some basic facts on analytic and complex geometry (divisors, blowing-up, big line bundles), we prove the theorem of Siegel-Remmert-Thimm, that the field of meromorphic functions on a connected compact complex manifold is an algebraic field of transcendence degree less than the dimension of the manifold. Then we study in more detail Moishezon manifolds and their relation to projective manifolds. In particular we prove that a Moishezon manifold is projective if and only if it carries a Kähler metric. We end the section 2.2 by giving the solution of the Grauert-Riemenschneider conjecture as application of the holomorphic Morse inequalities from Theorem 1.7.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.5 Bibliographic notes

  1. A. Aeppli, Modifikation von reellen und komplexen Mannigfaltigkeiten, Comment. Math. Helv. 31 (1957), 219–301. p. 269

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France 91 (1963), 1–38.

    MATH  MathSciNet  Google Scholar 

  3. F. Angelini, An algebraic version of Demailly’s asymptotic Morse inequalities, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3265–3269.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248 (2004), no. 2, 325–344.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Berndtsson, An eigenvalue estimate for the \( \bar \partial \)-Laplacian, J. Differential Geom. 60 (2002), no. 2, 295–313.

    MATH  MathSciNet  Google Scholar 

  6. E. Bierstone and P. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Bombieri, Algebraic values of meromorphic maps, Invent. Math. 10 (1970), 267–287.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Bonavero, Inégalités de Morse holomorphes singulières, Ph.D. thesis, 1995, Institut Fourier, Grenoble.

    Google Scholar 

  9. _____, Inégalités de Morse holomorphes singulières, J. Geom. Anal. 8 (1998), 409–425; announced in C. R. Acad. Sci. Paris 317 (1993),1163–1166.

    Google Scholar 

  10. S. Boucksom, On the volume of a line bundle, Internat. J. Math. 13 (2002), no. 10, 1043–1063.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.-P. Demailly, Champs magnétiques et inegalités de Morse pour la d″-cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), 189–229.

    MATH  MathSciNet  Google Scholar 

  12. _____, Regularization of closed positive currents and Intersection Theory, J. Alg. Geom. 1 (1992), 361–409, Th. 1.1

    MATH  MathSciNet  Google Scholar 

  13. _____, Singular hermitian metrics on positive line bundles, Proc. Conf. Complex algebraic varieties (Bayreuth, April 2–6,1990), vol. 1507, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  14. _____, L 2 vanishing theorems for positive line bundles and adjunction theory, Transcendental methods in algebraic geometry (Cetraro, 1994), Lecture Notes in Math., vol. 1646, Springer, Berlin, 1996, pp. 1–97.

    Chapter  Google Scholar 

  15. _____, Complex analytic and differential geometry, 2001, published online at www-fourier.ujf-grenoble.fr/?demailly/lectures.html.

    Google Scholar 

  16. J.-P. Demailly, L. Ein, and R. Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137–156.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.-P. Demailly and M. Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), no. 3, 1247–1274.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.-P. Demailly, Th. Peternell, and M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geometry 3 (1994), 295–345.

    MATH  MathSciNet  Google Scholar 

  19. G. Fischer, Complex analytic geometry, Lect. Notes, vol. 538, Springer-Verlag, 1976, §4.7

    Google Scholar 

  20. T. Fujita, Approximating Zariski decomposition of big line bundles, Kodai Math. J. 17 (1994), 1–3.

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Grant Melles and P. Milman, Classical Poincaré metric pulled back off singularities using a Chow-type theorem and desingularization, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 4, 689–771.

    MATH  MathSciNet  Google Scholar 

  22. H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368, §4

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Grauert and O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978.

    MATH  Google Scholar 

  25. R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., vol. 156, Springer-Verlag, Berlin, 1970.

    MATH  Google Scholar 

  26. _____, Algebraic Geometry, Springer-Verlag, Berlin, 1977, Ch. II,II, §7

    MATH  Google Scholar 

  27. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109–326.

    Article  MathSciNet  Google Scholar 

  28. _____, Flattening theorem in complex-analytic geometry, Am. J. Math. 97 (1975), 503–547.

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), no. 1, 63–113; Erratum: Invent. Math. 152 (2003), 209–212.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Ji and B. Shiffman, Properties of compact complex manifolds carrying closed positive currents, J. Geom. Anal. 3 (1993), no. 1, 37–61.

    MATH  MathSciNet  Google Scholar 

  31. S.L. Kleiman, Toward a numerical theory of ampleness, Annals of Math. 84 (1966), 293–344.

    Article  MathSciNet  Google Scholar 

  32. J. Kollár, Flips, flops, minimal models, Surveys in Diff. Geom. 1 (1991), 113–199.

    Google Scholar 

  33. R. Lazarsfeld, Positivity in algebraic geometry. I, II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 48-49, Springer-Verlag, Berlin, 2004, §2.2.C, §11.4

    Google Scholar 

  34. B. G. Moishezon, On n-dimensional compact complex manifolds having n algebraically independent meromorphic functions. I, II, III, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 133–174, 345–386, 621–656.

    MathSciNet  Google Scholar 

  35. A. Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596.

    Article  MathSciNet  Google Scholar 

  36. Th. Peternell, Algebraicity criteria for compact complex manifolds, Math. Ann. 275 (1986), no. 4, 653–672.

    Article  MATH  MathSciNet  Google Scholar 

  37. _____, Moishezon manifolds and rigidity theorems, Bayreuth. Math. Schr. 54 (1998), 1–108.

    MATH  MathSciNet  Google Scholar 

  38. R. Remmert, Meromorphe Funktionen in kompakten komplexen Räumen, Math. Ann. 132 (1956), 277–288.

    Article  MATH  MathSciNet  Google Scholar 

  39. _____, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957), 328–370.

    Article  MATH  MathSciNet  Google Scholar 

  40. I.R. Shafarevich, Basic Algebraic geometry, Grundl. math. Wiss., vol. 213, Springer-Verlag, Berlin, 1974, I.§5.4

    Google Scholar 

  41. C.L. Siegel, Meromorphe Funktionen auf kompakten analytischen Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen. Math. Phis. Kl. IIa (1955), 71–77.

    Google Scholar 

  42. Y.T. Siu, A vanishing theorem for semipositive line bundles over non-Kähler manifolds, J. Differential Geom. 20 (1984), 431–452.

    MathSciNet  Google Scholar 

  43. _____, Some recent results in complex manifold theory related to vanishing theorems for the semipositive case, Lecture Notes in Math. (Berlin-New York), vol. 1111, Springer Verlag, 1985, Arbeitstagung Bonn 1984, pp. 169–192.

    MathSciNet  Google Scholar 

  44. _____, An effective Matsusaka big theorem, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 5, 1387–1405.

    MATH  MathSciNet  Google Scholar 

  45. H. Skoda, Application des techniques L 2 à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5 (1972), 545–579.

    MATH  MathSciNet  Google Scholar 

  46. S. Takayama, A differential geometric property of big line nbundles, Tôhoku Math. J. 46 (1994), no. 2, 281–291.

    MATH  MathSciNet  Google Scholar 

  47. W. Thimm, Meromorphe Abbildungen von Riemannschen Bereichen, Math. Z. 60 (1954), 435–457.

    Article  MATH  MathSciNet  Google Scholar 

  48. S. Trapani, Numerical criteria for the positivity of the difference of ample divisors, Math. Z. 219 (1995), no. 3, 387–401.

    Article  MATH  MathSciNet  Google Scholar 

  49. S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag AG

About this chapter

Cite this chapter

(2007). Characterization of Moishezon Manifolds. In: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol 254. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8115-8_3

Download citation

Publish with us

Policies and ethics