Role of the blood-brain barrier and blood-CSF barrier in the pathogenesis of bacterial meningitis

  • Rüdiger Adam
  • Kwang Sik Kim
  • Horst Schroten
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Despite significant progress in prevention, diagnosis and therapy acute bacterial meningitis remains an important cause of high morbidity and mortality in the pediatric population with no significant improvement in the outcome in recent years. Further amelioration in treatment can only result from a better understanding of the pathophysiological events that occur after activation of the host’s inflammatory pathways secondary to initial bacterial invasion. The need for improved management strategies is highlighted by the observed increase in antibiotic resistance of microbial pathogens and recent developments in the pharmacological treatment of meningitis patients with dexamethasone, which might adversely influence delivery of drugs to the central nervous system (CNS). In this respect the cellular and molecular events at the blood-CNS barriers come to the focus of attention. It has become evident that these anatomical and functional barriers with their differentiated functionality and vast surface area centrally contribute to the development of bacterial meningitis. This holds true not only for their role as a port of entry into the CNS but also as key players in the pathophysiological cascade following bacterial invasion into the brain. Important aspects that have to be considered are the unique anatomical and functional features of the blood-brain barrier and the bloodcerebrospinal fluid barrier, and their distinct interactions with the variety of pathogens responsible for the development of bacterial meningitis.


Bacterial Meningitis Choroid Plexus Pneumococcal Meningitis Neisseria Meningitidis Brain Microvascular Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kim KS (2003) Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 4: 376–385CrossRefPubMedGoogle Scholar
  2. 2.
    Saez-Llorens X, McCracken GH Jr (2003) Bacterial meningitis in children. Lancet 361: 2139–2148CrossRefPubMedGoogle Scholar
  3. 3.
    Yogev R, Guzman-Cottrill J (2005) Bacterial meningitis in children: critical review of current concepts. Drugs 65: 1097–1112CrossRefPubMedGoogle Scholar
  4. 4.
    Klinger G, Chin CN, Beyene J, Perlman M (2000) Predicting the outcome of neonatal bacterial meningitis. Pediatrics 106: 477–482CrossRefPubMedGoogle Scholar
  5. 5.
    Anderson V, Anderson P, Grimwood K, Nolan T (2004) Cognitive and executive function 12 years after childhood bacterial meningitis: effect of acute neurologic complications and age of onset. J Pediatr Psychol 29: 67–81CrossRefPubMedGoogle Scholar
  6. 6.
    Nau R, Bruck W (2002) Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 25: 38–45CrossRefPubMedGoogle Scholar
  7. 7.
    Kornelisse RF, Westerbeek CM, Spoor AB, van der Heijde B, Spanjaard L, Neijens HJ, de Groot R (1995) Pneumococcal meningitis in children: prognostic indicators and outcome. Clin Infect Dis 21: 1390–1397PubMedGoogle Scholar
  8. 8.
    Koedel U, Scheld WM, Pfister HW (2002) Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2: 721–736CrossRefPubMedGoogle Scholar
  9. 9.
    Adam R, Schroten H (2004) Pathogenese der bakteriellen Meningitis. Monatsschr Kinderheilk 152: 362–370CrossRefGoogle Scholar
  10. 10.
    Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, Ricci S, Andrew PW, Pozzi G (2006) Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61: 1196–1210CrossRefPubMedGoogle Scholar
  11. 11.
    Moxon R, Tang C (2000) Challenge of investigating biologically relevant functions of virulence factors in bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 355: 643–656CrossRefPubMedGoogle Scholar
  12. 12.
    Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3: 569–581CrossRefPubMedGoogle Scholar
  13. 13.
    Tauber MG, Moser B (1999) Cytokines and chemokines in meningeal inflammation: biology and clinical implications. Clin Infect Dis 28: 1–11PubMedGoogle Scholar
  14. 14.
    van Furth AM, Roord JJ, van Furth R (1996) Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun 64: 4883–4890PubMedGoogle Scholar
  15. 15.
    van Deuren M, Brandtzaeg P, van der Meer JW (2000) Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin Microbiol Rev 13: 144–166PubMedGoogle Scholar
  16. 16.
    Humphries HE, Triantafilou M, Makepeace BL, Heckels JE, Triantafilou K, Christodoulides M (2005) Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor (TLR)4 and TLR2 signalling. Cell Microbiol 7: 415–430CrossRefPubMedGoogle Scholar
  17. 17.
    Scheld WM, Koedel U, Nathan B, Pfister HW (2002) Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 186(Suppl 2): S225–233CrossRefPubMedGoogle Scholar
  18. 18.
    Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci 21: 79–96PubMedGoogle Scholar
  19. 19.
    Gabrion JB, Herbute S, Bouille C, Maurel D, Kuchler-Bopp S, Laabich A, Delaunoy JP (1998) Ependymal and choroidal cells in culture: characterization and functional differentiation. Microsc Res Tech 41: 124–157CrossRefPubMedGoogle Scholar
  20. 20.
    Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16: 1–13CrossRefPubMedGoogle Scholar
  21. 21.
    Pardridge WM (1999) Blood-brain barrier biology and methodology. J Neurovirol 5: 556–569PubMedGoogle Scholar
  22. 22.
    Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and patophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24: 719–725CrossRefPubMedGoogle Scholar
  23. 23.
    Neuwelt EA (2004) Mechanisms of disease: the blood-brain barrier. Neurosurgery 54: 131–140; discussion 141–132CrossRefPubMedGoogle Scholar
  24. 24.
    Johanson CE (2003) The Choroid Plexus-CSF Nexus, Gateway to the Brain. Humana Press, TotowaGoogle Scholar
  25. 25.
    van Deurs B (1980) Structural aspects of brain barriers, with special reference to the permeability of the cerebral endothelium and choroidal epithelium. Int Rev Cytol 65: 117–191PubMedGoogle Scholar
  26. 26.
    Segal MB (2000) The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol 20: 183–196CrossRefPubMedGoogle Scholar
  27. 27.
    Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Dev Brain Res 56: 47–53CrossRefGoogle Scholar
  28. 28.
    Strazielle N, Ghersi-Egea JF (2000) Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 59: 561–574PubMedGoogle Scholar
  29. 29.
    Spector R, Johanson CE (1989) The mammalian choroid plexus. Sci Am 261: 68–74PubMedGoogle Scholar
  30. 30.
    Dellmann HD (1998) Structure of the subfornical organ: a review. Microsc Res Tech 41: 85–97CrossRefPubMedGoogle Scholar
  31. 31.
    Schulz M, Engelhardt B (2005) The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis. Cerebrospinal Fluid Res 2: 8CrossRefPubMedGoogle Scholar
  32. 32.
    Dietzman DE, Fischer GW, Schoenknecht FD (1974) Neonatal Escherichia coli septicemia — bacterial counts in blood. J Pediatr 85: 128–130CrossRefPubMedGoogle Scholar
  33. 33.
    Marshall GS, Bell LM (1988) Correlates of high grade and low grade Haemophilus influenzae bacteremia. Pediatr Infect Dis J 7: 86–90PubMedCrossRefGoogle Scholar
  34. 34.
    Moxon ER, Ostrow PT (1977) Haemophilus influenzae meningitis in infant rats: role of bacteremia in pathogenesis of age-dependent inflammatory responses in cerebrospinal fluid. J Infect Dis 135: 303–307PubMedGoogle Scholar
  35. 35.
    Ferrieri P, Burke B, Nelson J (1980) Production of bacteremia and meningitis in infant rats with group B streptococcal serotypes. Infect Immun 27: 1023–1032PubMedGoogle Scholar
  36. 36.
    Bell LM, Alpert G, Campos JM, Plotkin SA (1985) Routine quantitative blood cultures in children with Haemophilus influenzae or Streptococcus pneumoniae bacteremia. Pediatrics 76: 901–904PubMedGoogle Scholar
  37. 37.
    Sullivan TD, LaScolea LJ Jr, Neter E (1982) Relationship between the magnitude of bacteremia in children and the clinical disease. Pediatrics 69: 699–702PubMedGoogle Scholar
  38. 38.
    Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS (1992) The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Invest 90: 897–905PubMedGoogle Scholar
  39. 39.
    Sullivan TD, LaScolea LJ Jr (1987) Neisseria meningitidis bacteremia in children: quantitation of bacteremia and spontaneous clinical recovery without antibiotic therapy. Pediatrics 80: 63–67PubMedGoogle Scholar
  40. 40.
    Scheld WM, Park TS, Dacey RG, Winn HR, Jane JA, Sande MA (1979) Clearance of bacteria from cerebrospinal fluid to blood in experimental meningitis. Infect Immun 24: 102–105PubMedGoogle Scholar
  41. 41.
    Smith AL, Daum RS, Scheifele D, Syriopolou V, Averill DR, Roberts MC, Stull TL (1982) Pathogenesis of Haemophilus influenzae meningitis. In: SH Sell, PF Wright (eds): Haemophilus influenzae, Epidemiology, Immunology. Elsevier, New York, 89–109Google Scholar
  42. 42.
    Quagliarello VJ, Long WJ, Scheld WM (1986) Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat. Temporal sequence and role of encapsulation. J Clin Invest 77: 1084–1095PubMedGoogle Scholar
  43. 43.
    Townsend GC, Scheld WM (1995) In vitro models of the blood-brain barrier to study bacterial meningitis. Trends Microbiol 3: 441–445CrossRefPubMedGoogle Scholar
  44. 44.
    Rodriguez AF, Kaplan SL, Hawkins EP, Mason EO Jr (1991) Hematogenous pneumococcal meningitis in the infant rat: description of a model. J Infect Dis 164: 1207–1209PubMedGoogle Scholar
  45. 45.
    Parkkinen J, Korhonen TK, Pere A, Hacker J, Soinila S (1988) Binding sites in the rat brain for Escherichia coli S fimbriae associated with neonatal meningitis. 81: 860–865Google Scholar
  46. 46.
    Zwijnenburg PJ, van der Poll T, Florquin S, van Deventer SJ, Roord JJ, van Furth AM (2001) Experimental pneumococcal meningitis in mice: a model of intranasal infection. J Infect Dis 183: 1143–1146CrossRefPubMedGoogle Scholar
  47. 47.
    Pron B, Taha MK, Rambaud C, Fournet JC, Pattey N, Monnet JP, Musilek M, Beretti JL, Nassif X (1997) Interaction of Neisseria meningitidis with the components of the blood-brain barrier correlates with an increased expression of PilC. J Infect Dis 176: 1285–1292PubMedGoogle Scholar
  48. 48.
    Townsend GC, Scheld WM (1995) Microbe-endothelium interactions in bloodbrain barrier permeability during bacterial meningitis: Although bacterial pathogens can directly disrupt the barrier, a role for host factors is still under study. ASM News 61: 294–298Google Scholar
  49. 49.
    Vanier G, Segura M, Friedl P, Lacouture S, Gottschalk M (2004) Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infect Immun 72: 1441–1449CrossRefPubMedGoogle Scholar
  50. 50.
    Vadeboncoeur N, Segura M, Al-Numani D, Vanier G, Gottschalk M (2003) Proinflammatory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suis serotype 2. FEMS Immunol Med Microbiol 35: 49–58CrossRefPubMedGoogle Scholar
  51. 51.
    Huang SH, Jong AY (2001) Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier. Cell Microbiol 3: 277–287CrossRefPubMedGoogle Scholar
  52. 52.
    Huang SH, Stins MF, Kim KS (2000) Bacterial penetration across the blood-brain barrier during the development of neonatal meningitis. Microbes Infect 2: 1237–1244CrossRefPubMedGoogle Scholar
  53. 53.
    Kim KS (2002) Strategy of Escherichia coli for crossing the blood-brain barrier. J Infect Dis 186(Suppl 2): S220–224CrossRefPubMedGoogle Scholar
  54. 54.
    Smith AL, Greenfield MD, Toothaker RD (1984) Experimental meningitis in the rat: Haemophilus influenzae. Infection 12(Suppl 1): S11–22CrossRefPubMedGoogle Scholar
  55. 55.
    Smith AL (1987) Pathogenesis of Haemophilus influenzae meningitis. Pediatr Infect Dis J 6: 783–786PubMedCrossRefGoogle Scholar
  56. 56.
    Daum RS, Scheifele DW, Syriopoulou VP, Averill D, Smith AL (1978) Ventricular involvement in experimental Haemophilus influenzae meningitis. J Pediatr 93: 927–930PubMedCrossRefGoogle Scholar
  57. 57.
    Williams AE, Blakemore WF (1990) Pathogenesis of meningitis caused by Streptococcus suis type 2. J Infect Dis 162: 474–481PubMedGoogle Scholar
  58. 58.
    Prats N, Briones V, Blanco MM, Altimira J, Ramos JA, Dominguez L, Marco A (1992) Choroiditis and meningitis in experimental murine infection with Listeria monocytogenes. Eur J Clin Microbiol Infect Dis 11: 744–747CrossRefPubMedGoogle Scholar
  59. 59.
    Leib SL, Kim YS, Black SM, Tureen JH, Tauber MG (1998) Inducible nitric oxide synthase and the effect of aminoguanidine in experimental neonatal meningitis. J Infect Dis 177: 692–700PubMedCrossRefGoogle Scholar
  60. 60.
    Wellmer A, von Mering M, Spreer A, Diem R, Eiffert H, Noeske C, Bunkowski S, Gold R, Nau R (2004) Experimental pneumococcal meningitis: impaired clearance of bacteria from the blood due to increased apoptosis in the spleen in Bcl-2-deficient mice. Infect Immun 72: 3113–3119CrossRefPubMedGoogle Scholar
  61. 61.
    Koedel U, Pfister HW (1999) Models of experimental bacterial meningitis. Role and limitations. Infect Dis Clin North Am 13: 549–577, viCrossRefPubMedGoogle Scholar
  62. 62.
    Tunkel AR (2001) Pathogenesis and pathophysiology. In: Tunkel AR (ed): Bacterial Meningitis. Lippincott Williams & Wilkins, Philadelphia, 41–85Google Scholar
  63. 63.
    Moxon ER, Smith AL, Averill DR, Smith DH (1974) Haemophilus influenzae meningitis in infant rats after intranasal inoculation. J Infect Dis 129: 154–162PubMedGoogle Scholar
  64. 64.
    Borrelli S, Diab A, Lindberg A, Svanborg C (2000) Monoclonal anti-LPS inner core antibodies protect against experimental hematogenous Haemophilus influenzae type b meningitis. Microb Pathog 28: 1–8CrossRefPubMedGoogle Scholar
  65. 65.
    Huang SH, Wass C, Fu Q, Prasadarao NV, Stins M, Kim KS (1995) Escherichia coli invasion of brain microvascular endothelial cells in vitro and in vivo: molecular cloning and characterization of invasion gene ibe10. Infect Immun 63, 4470–4475PubMedGoogle Scholar
  66. 66.
    Xie Y, Kim KJ, Kim KS (2004) Current concepts on Escherichia coli K1 translocation of the blood-brain barrier. FEMS Immunol Med Microbiol 42: 271–279CrossRefPubMedGoogle Scholar
  67. 67.
    Prasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS (1996) Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 64: 146–153PubMedGoogle Scholar
  68. 68.
    Kim KS, Wass CA, Cross AS (1997) Blood-brain barrier permeability during the development of experimental bacterial meningitis in the rat. Exp Neurol 145: 253–257CrossRefPubMedGoogle Scholar
  69. 69.
    Leib SL, Heimgartner C, Bifrare YD, Loeffler JM, Tauber MG (2003) Dexamethasone aggravates hippocampal apoptosis and learning deficiency in pneumococcal meningitis in infant rats. Pediatr Res 54: 353–357CrossRefPubMedGoogle Scholar
  70. 70.
    Pfister LA, Tureen JH, Shaw S, Christen S, Ferriero DM, Tauber MG, Leib SL (2000) Endothelin inhibition improves cerebral blood flow and is neuroprotective in pneumococcal meningitis. Ann Neurol 47: 329–335CrossRefPubMedGoogle Scholar
  71. 71.
    Tauber MG, Sande MA (1984) Pathogenesis of bacterial meningitis: contributions by experimental models in rabbits. Infection 12(Suppl 1): S3–10CrossRefPubMedGoogle Scholar
  72. 72.
    Christen S, Schaper M, Lykkesfeldt J, Siegenthaler C, Bifrare YD, Banic S, Leib SL, Tauber MG (2001) Oxidative stress in brain during experimental bacterial meningitis: differential effects of alpha-phenyl-tert-butyl nitrone and N-acetylcysteine treatment. Free Radic Biol Med 31: 754–762CrossRefPubMedGoogle Scholar
  73. 73.
    Ostergaard C, Brandt C, Konradsen HB, Samuelsson S (2004) Differences in survival, brain damage, and cerebrospinal fluid cytokine kinetics due to meningitis caused by 3 different Streptococcus pneumoniae serotypes: evaluation in humans and in 2 experimental models. J Infect Dis 190: 1212–1220CrossRefPubMedGoogle Scholar
  74. 74.
    Tsao N, Chang WW, Liu CC, Lei HY (2002) Development of hematogenous pneumococcal meningitis in adult mice: the role of TNF-alpha. FEMS Immunol Med Microbiol 32: 133–140PubMedGoogle Scholar
  75. 75.
    Paul R, Koedel U, Pfister HW (2005) Development of adjunctive therapies for bacterial meningitis and lessons from knockout mice. Neurocrit Care 2: 313–324CrossRefPubMedGoogle Scholar
  76. 76.
    Buster BL, Weintrob AC, Townsend GC, Scheld WM (1995) Potential role of nitric oxide in the pathophysiology of experimental bacterial meningitis in rats. Infect Immun 63: 3835–3839PubMedGoogle Scholar
  77. 77.
    Tuomanen E (1996) Entry of pathogens into the central nervous system. FEMS Microbiol Rev 18: 289–299CrossRefPubMedGoogle Scholar
  78. 78.
    Dorovini-Zis K, Prameya R, Bowman PD (1991) Culture and characterization of microvascular endothelial cells derived from human brain. Lab Invest 64: 425–436PubMedGoogle Scholar
  79. 79.
    Gerhart DZ, Broderius MA, Drewes LR (1988) Cultured human and canine endothelial cells from brain microvessels. Brain Res Bull 21: 785–793CrossRefPubMedGoogle Scholar
  80. 80.
    Bowman PD, Betz AL, Wolinsky JS, Penney JB, Shivers RR, Goldstein GW (1981) Primary culture of capillary endothelium from rat brain. In vitro 17: 353–362CrossRefPubMedGoogle Scholar
  81. 81.
    Tunkel AR, Rosser SW, Hansen EJ, Scheld WM (1991) Blood-brain barrier alterations in bacterial meningitis: development of an in vitro model and observations on the effects of lipopolysaccharide. In Vitro Cell Dev Biol 27A: 113–120CrossRefPubMedGoogle Scholar
  82. 82.
    Banks WA (1999) Physiology and pathology of the blood-brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirol 5: 538–555PubMedGoogle Scholar
  83. 83.
    Zysk G, Schneider-Wald BK, Hwang JH, Bejo L, Kim KS, Mitchell TJ, Hakenbeck R, Heinz HP (2001) Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun 69: 845–852CrossRefPubMedGoogle Scholar
  84. 84.
    Stins MF, Gilles F, Kim KS (1997) Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76: 81–90CrossRefPubMedGoogle Scholar
  85. 85.
    Birkness KA, Swisher BL, White EH, Long EG, Ewing EP Jr, Quinn FD (1995) A tissue culture bilayer model to study the passage of Neisseria meningitidis. Infect Immun 63: 402–409PubMedGoogle Scholar
  86. 86.
    Haseloff RF, Blasig IE, Bauer HC, Bauer H (2005) In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25: 25–39CrossRefPubMedGoogle Scholar
  87. 87.
    Michel U, Zobotke R, Mader M, Nau R (2001) Regulation of matrix metalloproteinase expression in endothelial cells by heat-inactivated Streptococcus pneumoniae. Infect Immun 69: 1914–1916CrossRefPubMedGoogle Scholar
  88. 88.
    Badger JL, Kim KS (1998) Environmental growth conditions influence the ability of Escherichia coli K1 to invade brain microvascular endothelial cells and confer serum resistance. Infect Immun 66: 5692–5697PubMedGoogle Scholar
  89. 89.
    Stins MF, Badger J, Sik Kim K (2001) Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 30: 19–28CrossRefPubMedGoogle Scholar
  90. 90.
    Stins MF, Prasadarao NV, Zhou J, Arditi M, Kim KS (1997) Bovine brain microvascular endothelial cells transfected with SV40-large T antigen: development of an immortalized cell line to study pathophysiology of CNS disease. In Vitro Cell Dev Biol Anim 33: 243–247CrossRefPubMedGoogle Scholar
  91. 91.
    Doran KS, Liu GY, Nizet V (2003) Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest 112: 736–744CrossRefPubMedGoogle Scholar
  92. 92.
    Charland N, Nizet V, Rubens CE, Kim KS, Lacouture S, Gottschalk M (2000) Streptococcus suis serotype 2 interactions with human brain microvascular endothelial cells. Infect Immun 68: 637–643CrossRefPubMedGoogle Scholar
  93. 93.
    Sokolova O, Heppel N, Jagerhuber R, Kim KS, Frosch M, Eigenthaler M, Schubert-Unkmeir A (2004) Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP-and tyrosine kinases in invasion and inflammatory cytokine release. Cell Microbiol 6: 1153–1166CrossRefPubMedGoogle Scholar
  94. 94.
    Schroten H, Spors B, Hucke C, Stins M, Kim KS, Adam R, Daubener W (2001) Potential role of human brain microvascular endothelial cells in the pathogenesis of brain abscess: inhibition of Staphylococcus aureus by activation of indoleamine 2,3-dioxygenase. Neuropediatrics 32: 206–210CrossRefPubMedGoogle Scholar
  95. 95.
    Daines DA, Jarisch J, Smith AL (2004) Identification and characterization of a non-typeable Haemophilus influenzae putative toxin-antitoxin locus. BMC Microbiol 4: 30CrossRefPubMedGoogle Scholar
  96. 96.
    Teifel M, Friedl P (1996) Establishment of the permanent microvascular endothelial cell line PBMEC/C1-2 from porcine brains. Exp Cell Res 228: 50–57CrossRefPubMedGoogle Scholar
  97. 97.
    Benga L, Friedl P, Valentin-Weigand P (2005) Adherence of Streptococcus suis to porcine endothelial cells. J Vet Med B Infect Dis Vet Public Health 52: 392–395PubMedGoogle Scholar
  98. 98.
    Vanier G, Szczotka A, Friedl P, Lacouture S, Jacques M, Gottschalk M (2006) Haemophilus parasuis invades porcine brain microvascular endothelial cells. Microbiology 152: 135–142CrossRefPubMedGoogle Scholar
  99. 99.
    Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25: 59–127CrossRefPubMedGoogle Scholar
  100. 100.
    Ruffer C, Strey A, Janning A, Kim KS, Gerke V (2004) Cell-cell junctions of dermal microvascular endothelial cells contain tight and adherens junction proteins in spatial proximity. Biochemistry 43: 5360–5369CrossRefPubMedGoogle Scholar
  101. 101.
    Tsutsumi M, Skinner MK, Sanders-Bush E (1989) Transferrin gene expression and synthesis by cultured choroid plexus epithelial cells. J Biol Chem 264: 9626–9631PubMedGoogle Scholar
  102. 102.
    Crook RB, Kasagami H, Prusiner SB (1981) Culture and characterization of epithelial cells from bovine choroid plexus. J Neurochem 37: 845–854CrossRefPubMedGoogle Scholar
  103. 103.
    Ramanathan VK, Hui AC, Brett CM, Giacomini KM (1996) Primary cell culture of the rabbit choroid plexus: An experimental system to investigate membrane transport. Pharm Res 13: 952–956CrossRefPubMedGoogle Scholar
  104. 104.
    Sanders-Bush E, Breeding M (1991) Choroid plexus epithelial cells in primary culture: a model of 5HT1C receptor activation by hallucinogenic drugs. Psychopharmacology (Berl) 105: 340–346CrossRefGoogle Scholar
  105. 105.
    Southwell BR, Duan W, Alcorn D, Brack C, Richardson SJ, Köhrle J, Schreiber G (1993) Thyroxine transport to the brain: role of protein synthesis by the choroid plexus. Endocrinology 133: 2116–2126CrossRefPubMedGoogle Scholar
  106. 106.
    Strazielle N, Ghersi-Egea JF (1999) Demonstration of a coupled metabolismefflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J Neurosci 19: 6275–6289PubMedGoogle Scholar
  107. 107.
    Villalobos AR, Parmelee JT, Pritchard JB (1997) Functional characterization of choroid plexus epithelial cells in primary culture. J Pharmacol Exp Ther 282: 1109–1116PubMedGoogle Scholar
  108. 108.
    Gath U, Hakvoort A, Wegener J, Decker S, Galla HJ (1997) Porcine choroid plexus cells in culture: expression of polarized phenotype, maintenance of barrier properties and apical secretion of CSF-components. Eur J Cell Biol 74, 68–78PubMedGoogle Scholar
  109. 109.
    Adam RA, Tenenbaum T, Valentin-Weigand P, Laryea M, Schwahn B, Angelow S, Galla HJ, Daubener W, Schroten H (2004) Porcine choroid plexus epithelial cells induce Streptococcus suis bacteriostasis in vitro. Infect Immun 72: 3084–3087CrossRefPubMedGoogle Scholar
  110. 110.
    Tenenbaum T, Adam R, Eggelnpohler I, Matalon D, Seibt AK, Novotny GE, Galla HJ, Schroten H (2005) Strain-dependent disruption of blood-cerebrospinal fluid barrier by Streptococcus suis in vitro. FEMS Immunol Med Microbiol 44: 25–34CrossRefPubMedGoogle Scholar
  111. 111.
    Tenenbaum T, Essmann F, Adam R, Seibt A, Janicke RU, Novotny GE, Galla HJ, Schroten H (2006) Cell death, caspase activation, and HMGB1 release of porcine choroid plexus epithelial cells during Streptococcus suis infection in vitro. Brain Res 1100: 1–12CrossRefPubMedGoogle Scholar
  112. 112.
    Kitazawa T, Hosoya K, Watanabe M, Takashima T, Ohtsuki S, Takanaga H, Ueda M, Yanai N, Obinata M, Terasaki T (2001) Characterization of the amino acid transport of new immortalized choroid plexus epithelial cell lines: a novel in vitro system for investigating transport functions at the blood-cerebrospinal fluid barrier. Pharm Res 18: 16–22CrossRefPubMedGoogle Scholar
  113. 113.
    Zheng W, Zhao Q (2002) Establishment and characterization of an immortalized Z310 choroidal epithelial cell line from murine choroid plexus. Brain Res 958: 371–380CrossRefPubMedGoogle Scholar
  114. 114.
    Torchio C, Trowbridge RS (1977) Ovine cells: their long-term cultivation and susceptibility to visna virus. In Vitro 13: 252–259CrossRefPubMedGoogle Scholar
  115. 115.
    Kim KS (2001) Escherichia coli translocation at the blood-brain barrier. Infect Immun 69: 5217–5222CrossRefPubMedGoogle Scholar
  116. 116.
    Unkmeir A, Latsch K, Dietrich G, Wintermeyer E, Schinke B, Schwender S, Kim KS, Eigenthaler M, Frosch M (2002) Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol Microbiol 46: 933–946CrossRefPubMedGoogle Scholar
  117. 117.
    Ring A, Weiser JN, Tuomanen EI (1998) Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 102: 347–360PubMedGoogle Scholar
  118. 118.
    Tenenbaum T, Bloier C, Adam R, Reinscheid DJ, Schroten H (2005) Adherence to and invasion of human brain microvascular endothelial cells are promoted by fibrinogen-binding protein FbsA of Streptococcus agalactiae. Infect Immun 73: 4404–4409CrossRefPubMedGoogle Scholar
  119. 119.
    Nizet V, Kim KS, Stins M, Jonas M, Chi EY, Nguyen D, Rubens CE (1997) Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun 65: 5074–5081PubMedGoogle Scholar
  120. 120.
    Greiffenberg L, Goebel W, Kim KS, Weiglein I, Bubert A, Engelbrecht F, Stins M, Kuhn M (1998) Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth, and spread from macrophages to endothelial cells. Infect Immun 66: 5260–5267PubMedGoogle Scholar
  121. 121.
    Jain SK, Paul-Satyaseela M, Lamichhane G, Kim KS, Bishai WR (2006) Mycobacterium tuberculosis invasion and traversal across an in vitro human blood-brain barrier as a pathogenic mechanism for central nervous system tuberculosis. J Infect Dis 193: 1287–1295CrossRefPubMedGoogle Scholar
  122. 122.
    Jong AY, Stins MF, Huang SH, Chen SH, Kim KS (2001) Traversal of Candida albicans across human blood-brain barrier in vitro. Infect Immun 69: 4536–4544CrossRefPubMedGoogle Scholar
  123. 123.
    Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, Paul-Satyaseela M, Kim KS, Kwon-Chung KJ (2004) Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun 72: 4985–4995CrossRefPubMedGoogle Scholar
  124. 124.
    Jedrzejas MJ (2001) Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 65: 187–207CrossRefPubMedGoogle Scholar
  125. 125.
    Tunkel AR, Wispelwey B, Quagliarello VJ, Rosser SW, Lesse AJ, Hansen EJ, Scheld WM (1992) Pathophysiology of blood-brain barrier alterations during experimental Haemophilus influenzae meningitis. J Infect Dis 165(Suppl 1): S119–120PubMedGoogle Scholar
  126. 126.
    Grab DJ, Perides G, Dumler JS, Kim KJ, Park J, Kim YV, Nikolskaia O, Choi KS, Stins MF, Kim KS (2005) Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infect Immun 73: 1014–1022CrossRefPubMedGoogle Scholar
  127. 127.
    Nikolskaia OV, Kim YV, Kovbasnjuk O, Kim KJ, Grab DJ (2006) Entry of Trypanosoma brucei gambiense into microvascular endothelial cells of the human blood-brain barrier. Int J Parasitol 36: 513–519CrossRefPubMedGoogle Scholar
  128. 128.
    Drevets DA, Leenen PJ, Greenfield RA (2004) Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev 17: 323–347CrossRefPubMedGoogle Scholar
  129. 129.
    Join-Lambert OF, Ezine S, Le Monnier A, Jaubert F, Okabe M, Berche P, Kayal S (2005) Listeria monocytogenes-infected bone marrow myeloid cells promote bacterial invasion of the central nervous system. Cell Microbiol 7: 167–180PubMedCrossRefGoogle Scholar
  130. 130.
    Antal EA, Loberg EM, Bracht P, Melby KK, Maehlen J (2001) Evidence for intraaxonal spread of Listeria monocytogenes from the periphery to the central nervous system. Brain Pathol 11: 432–438PubMedCrossRefGoogle Scholar
  131. 131.
    Valentin-Weigand P, Benkel P, Rohde M, Chatwal GS (1996) Entry and intracellular survival of group B streptococci in J774 macrophages. Infect Immun 64: 2467–2473Google Scholar
  132. 132.
    Sukumaran SK, Shimada H, Prasadarao NV (2003) Entry and intracellular replication of Escherichia coli K1 in macrophages require expression of outer membrane protein A. Infect Immun 71: 5951–5961CrossRefPubMedGoogle Scholar
  133. 133.
    Segura MA, Cleroux P, Gottschalk M (1998) Streptococcus suis and group B Streptococcus differ in their interactions with murine macrophages. FEMS Immunol Med Microbiol 21: 189–195CrossRefPubMedGoogle Scholar
  134. 134.
    Gottschalk M, Segura M (2000) The pathogenesis of the meningitis caused by Streptococcus suis: the unresolved questions. Vet Microbiol 76: 259–272CrossRefPubMedGoogle Scholar
  135. 135.
    Teng CH, Cai M, Shin S, Xie Y, Kim KJ, Khan NA, Di Cello F, Kim KS (2005) Escherichia coli K1 RS218 interacts with human brain microvascular endothelial cells via type 1 fimbria bacteria in the fimbriated state. Infect Immun 73: 2923–2931CrossRefPubMedGoogle Scholar
  136. 136.
    Stins MF, Prasadarao NV, Ibric L, Wass CA, Luckett P, Kim KS (1994) Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am J Pathol 145: 1228–1236PubMedGoogle Scholar
  137. 137.
    Prasadarao NV, Wass CA, Kim KS (1997) Identification and characterization of S fimbria-binding sialoglycoproteins on brain microvascular endothelial cells. Infect Immun 65: 2852–2860PubMedGoogle Scholar
  138. 138.
    Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377: 435–438CrossRefPubMedGoogle Scholar
  139. 139.
    Orihuela CJ, Radin JN, Sublett JE, Gao G, Kaushal D, Tuomanen EI (2004) Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72: 5582–5596CrossRefPubMedGoogle Scholar
  140. 140.
    Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M, Tuomanen E (2000) The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102: 827–837CrossRefPubMedGoogle Scholar
  141. 141.
    Pracht D, Elm C, Gerber J, Bergmann S, Rohde M, Seiler M, Kim KS, Jenkinson HF, Nau R, Hammerschmidt S (2005) PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infect Immun 73: 2680–2689CrossRefPubMedGoogle Scholar
  142. 142.
    Hirst RA, Sikand KS, Rutman A, Mitchell TJ, Andrew PW, O’Callaghan C (2000) Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency. Infect Immun 68: 1557–1562CrossRefPubMedGoogle Scholar
  143. 143.
    Hirst RA, Gosai B, Rutman A, Andrew PW, O’Callaghan C (2003) Streptococcus pneumoniae damages the ciliated ependyma of the brain during meningitis. Infect Immun 71: 6095–6100CrossRefPubMedGoogle Scholar
  144. 144.
    Deghmane AE, Giorgini D, Larribe M, Alonso JM, Taha MK (2002) Down-regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial cells is mediated by CrgA regulatory protein. Mol Microbiol 43: 1555–1564CrossRefPubMedGoogle Scholar
  145. 145.
    Vogel U, Frosch M (1999) Mechanisms of neisserial serum resistance. Mol Microbiol 32: 1133–1139CrossRefPubMedGoogle Scholar
  146. 146.
    Nassif X, Bourdoulous S, Eugene E, Couraud PO (2002) How do extracellular pathogens cross the blood-brain barrier? Trends Microbiol 10: 227–232CrossRefPubMedGoogle Scholar
  147. 147.
    Jobin MC, Fortin J, Willson PJ, Gottschalk M, Grenier D (2005) Acquisition of plasmin activity and induction of arachidonic acid release by Streptococcus suis in contact with human brain microvascular endothelial cells. FEMS Microbiol Lett 252: 105–111CrossRefPubMedGoogle Scholar
  148. 148.
    Lesse AJ, Moxon ER, Zwahlen A, Scheld WM (1988) Role of cerebrospinal fluid pleocytosis and Haemophilus influenzae type b capsule on blood brain barrier permeability during experimental meningitis in the rat. J Clin Invest 82: 102–109PubMedCrossRefGoogle Scholar
  149. 149.
    Tauber MG, Borschberg U, Sande MA (1988) Influence of granulocytes on brain edema, intracranial pressure, and cerebrospinal fluid concentrations of lactate and protein in experimental meningitis. J Infect Dis 157: 456–464PubMedGoogle Scholar
  150. 150.
    Tan TQ, Smith CW, Hawkins EP, Mason EO Jr, Kaplan SL (1995) Hematogenous bacterial meningitis in an intercellular adhesion molecule-1-deficient infant mouse model. J Infect Dis 171: 342–349PubMedGoogle Scholar
  151. 151.
    Adler-Shohet FC, Cheung MM, Hill M, Lieberman JM (2003) Aseptic meningitis in infants younger than six months of age hospitalized with urinary tract infections. Pediatr Infect Dis J 22: 1039–1042CrossRefPubMedGoogle Scholar
  152. 152.
    Finkelstein Y, Mosseri R, Garty BZ (2001) Concomitant aseptic meningitis and bacterial urinary tract infection in young febrile infants. Pediatr Infect Dis J 20: 630–632CrossRefPubMedGoogle Scholar
  153. 153.
    Felgenhauer K, Kober D (1985) Apurulent bacterial meningitis (compartmental leucopenia in purulent meningitis). J Neurol 232: 157–161CrossRefPubMedGoogle Scholar
  154. 154.
    Lukes SA, Posner JB, Nielsen S, Armstrong D (1984) Bacterial infections of the CNS in neutropenic patients. Neurology 34: 269–275PubMedGoogle Scholar
  155. 155.
    Zwijnenburg PJ, van der Poll T, Roord JJ, van Furth AM (2006) Chemotactic factors in cerebrospinal fluid during bacterial meningitis. Infect Immun 74: 1445–1451CrossRefPubMedGoogle Scholar
  156. 156.
    Schoning B, Elepfandt P, Daberkow N, Rupprecht S, Stockhammer F, Stoltenburg G, Volk HD, Woiciechowsky C (2002) Differences in immune cell invasion into the cerebrospinal fluid and brain parenchyma during cerebral infusion of interleukin-1beta. Neurol Sci 23: 211–218CrossRefPubMedGoogle Scholar
  157. 157.
    Kubes P, Ward PA (2000) Leukocyte recruitment and the acute inflammatory response. Brain Pathol 10: 127–135PubMedCrossRefGoogle Scholar
  158. 158.
    Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314CrossRefPubMedGoogle Scholar
  159. 159.
    Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26: 485–495CrossRefPubMedGoogle Scholar
  160. 160.
    Wilson SL, Drevets DA (1998) Listeria monocytogenes infection and activation of human brain microvascular endothelial cells. J Infect Dis 178: 1658–1666CrossRefPubMedGoogle Scholar
  161. 161.
    Tripathi AK, Sullivan DJ, Stins MF (2006) Plasmodium falciparum-infected erythrocytes increase intercellular adhesion molecule 1 expression on brain endothelium through NF-kappaB. Infect Immun 74: 3262–3270CrossRefPubMedGoogle Scholar
  162. 162.
    Weber JR, Angstwurm K, Burger W, Einhaupl KM, Dirnagl U (1995) Anti ICAM-1 (CD 54) monoclonal antibody reduces inflammatory changes in experimental bacterial meningitis. J Neuroimmunol 63: 63–68CrossRefPubMedGoogle Scholar
  163. 163.
    Engelhardt B, Wolburg-Buchholz K, Wolburg H (2001) Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech 52: 112–129CrossRefPubMedGoogle Scholar
  164. 164.
    Lahrtz F, Piali L, Spanaus KS, Seebach J, Fontana A (1998) Chemokines and chemotaxis of leukocytes in infectious meningitis. J Neuroimmunol 85: 33–43CrossRefPubMedGoogle Scholar
  165. 165.
    Tang RB, Lee BH, Chung RL, Chen SJ, Wong TT (2001) Interleukin-1beta and tumor necrosis factor-alpha in cerebrospinal fluid of children with bacterial meningitis. Childs Nerv Syst 17: 453–456CrossRefPubMedGoogle Scholar
  166. 166.
    Andjelkovic AV, Pachter JS (2000) Characterization of binding sites for chemokines MCP-1 and MIP-1alpha on human brain microvessels. J Neurochem 75: 1898–1906CrossRefPubMedGoogle Scholar
  167. 167.
    Prat A, Biernacki K, Wosik K, Antel JP (2001) Glial cell influence on the human blood-brain barrier. Glia 36: 145–155CrossRefPubMedGoogle Scholar
  168. 168.
    Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C, Auer M, Hub E, Rot A (1997) Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91: 385–395CrossRefPubMedGoogle Scholar
  169. 169.
    Shukaliak JA, Dorovini-Zis K (2000) Expression of the beta-chemokines RANTES and MIP-1 beta by human brain microvessel endothelial cells in primary culture. J Neuropathol Exp Neurol 59: 339–352PubMedGoogle Scholar
  170. 170.
    Fabry Z, Fitzsimmons KM, Herlein JA, Moninger TO, Dobbs MB, Hart MN (1993) Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J Neuroimmunol 47: 23–34CrossRefPubMedGoogle Scholar
  171. 171.
    Frigerio S, Gelati M, Ciusani E, Corsini E, Dufour A, Massa G, Salmaggi A (1998) Immunocompetence of human microvascular brain endothelial cells: cytokine regulation of IL-1beta, MCP-1, IL-10, sICAM-1 and sVCAM-1. J Neurol 245: 727–730CrossRefPubMedGoogle Scholar
  172. 172.
    Armah H, Wired EK, Dodoo AK, Adjei AA, Tettey Y, Gyasi R (2005) Cytokines and adhesion molecules expression in the brain in human cerebral malaria. Int J Environ Res Public Health 2: 123–131PubMedGoogle Scholar
  173. 173.
    Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36: 118–124CrossRefPubMedGoogle Scholar
  174. 174.
    Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31: 42–57CrossRefPubMedGoogle Scholar
  175. 175.
    Williams K, Alvarez X, Lackner AA (2001) Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36: 156–164CrossRefPubMedGoogle Scholar
  176. 176.
    Polfliet MM, Goede PH, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2001) A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J Neuroimmunol 116: 188–195CrossRefPubMedGoogle Scholar
  177. 177.
    Polfliet MM, Zwijnenburg PJ, van Furth AM, van der Poll T, Dopp EA, Renardel de Lavalette C, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2001) Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol 167: 4644–4650PubMedGoogle Scholar
  178. 178.
    Ling EA, Kaur C, Lu J (1998) Origin, nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc Res Tech 41: 43–56CrossRefPubMedGoogle Scholar
  179. 179.
    McMenamin PG (1999) Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 405: 553–562CrossRefPubMedGoogle Scholar
  180. 180.
    Lu J, Kaur C, Ling EA (1994) Up-regulation of surface antigens on epiplexus cells in postnatal rats following intraperitoneal injections of lipopolysaccharide. Neuroscience 63: 1169–1178CrossRefPubMedGoogle Scholar
  181. 181.
    Eriksson C, Nobel S, Winblad B, Schultzberg M (2000) Expression of interleukin 1 alpha and beta, and interleukin 1 receptor antagonist mRNA in the rat central nervous system after peripheral administration of lipopolysaccharides. Cytokine 12: 423–431CrossRefPubMedGoogle Scholar
  182. 182.
    Serot JM, Foliguet B, Bene MC, Faure GC (1997) Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport 8: 1995–1998CrossRefPubMedGoogle Scholar
  183. 183.
    Ryan G, Grimes T, Brankin B, Mabruk MJ, Hosie MJ, Jarrett O, Callanan JJ (2005) Neuropathology associated with feline immunodeficiency virus infection highlights prominent lymphocyte trafficking through both the blood-brain and blood-choroid plexus barriers. J Neurovirol 11: 337–345CrossRefPubMedGoogle Scholar
  184. 184.
    McMenamin PG, Wealthall RJ, Deverall M, Cooper SJ, Griffin B (2003) Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res 313: 259–269CrossRefPubMedGoogle Scholar
  185. 185.
    Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3: 216–227CrossRefPubMedGoogle Scholar
  186. 186.
    Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443–451CrossRefPubMedGoogle Scholar
  187. 187.
    Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15: 155–163CrossRefPubMedGoogle Scholar
  188. 188.
    Laflamme N, Echchannaoui H, Landmann R, Rivest S (2003) Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur J Immunol 33: 1127–1138CrossRefPubMedGoogle Scholar
  189. 189.
    Mogensen TH, Paludan SR, Kilian M, Ostergaard L (2006) Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol 80: 267–277CrossRefPubMedGoogle Scholar
  190. 190.
    Koedel U, Angele B, Rupprecht T, Wagner H, Roggenkamp A, Pfister HW, Kirschning CJ (2003) Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 170: 438–444PubMedGoogle Scholar
  191. 191.
    Adam R, Russing D, Adams O, Ailyati A, Sik Kim K, Schroten H, Daubener W (2005) Role of human brain microvascular endothelial cells during central nervous system infection. Significance of indoleamine 2,3-dioxygenase in antimicrobial defence and immunoregulation. Thromb Haemost 94: 341–346PubMedGoogle Scholar
  192. 192.
    Daubener W, Spors B, Hucke C, Adam R, Stins M, Kim KS, Schroten H (2001) Restriction of Toxoplasma gondii growth in human brain microvascular endothelial cells by activation of indoleamine 2,3-dioxygenase. Infect Immun 69: 6527–6531CrossRefPubMedGoogle Scholar
  193. 193.
    Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A et al (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115: 1249–1273CrossRefPubMedGoogle Scholar
  194. 194.
    Heyes MP, Saito K, Milstien S, Schiff SJ (1995) Quinolinic acid in tumors, hemorrhage and bacterial infections of the central nervous system in children. J Neurol Sci 133: 112–118CrossRefPubMedGoogle Scholar
  195. 195.
    Fujiwara M, Shibata M, Watanabe Y, Nukiwa T, Hirata F, Mizuno N, Hayaishi O (1978) Indoleamine 2,3-dioxygenase. Formation of L-kynurenine from Ltryptophan in cultured rabbit fineal gland. J Biol Chem 253: 6081–6085PubMedGoogle Scholar
  196. 196.
    Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49: 15–23CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Rüdiger Adam
    • 1
  • Kwang Sik Kim
    • 2
  • Horst Schroten
    • 1
  1. 1.Pediatric Infectious Diseases, Klinik für Allgemeine PädiatrieUniversitätsklinikumDüsseldorfGermany
  2. 2.Pediatric Infectious DiseasesJohns Hopkins HospitalBaltimoreUSA

Personalised recommendations