Early childhood caries and childhood periodontal diseases

  • Shigenobu Kimura
  • Yuko Ohara-Nemoto
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Dental caries and periodontal diseases are one of the most prevalent diseases affecting adults and children in industrialized countries. The major causative factor in both diseases is the microbial biofilm (dental plaque) formed on teeth and oral epithelial surfaces, and early childhood caries and periodontal diseases are both plaque-induced infectious diseases caused by endogenous bacteria. However, it is also evident that the colonization of the putative pathogenic bacteria in plaque is not sufficient for the initiation and onset of these plaque diseases. In dental caries, it is apparent that the association of dietary fermentable carbohydrates, especially sucrose, is implicated in the etiology. Moreover, recent studies also acknowledge the significant role of the local environmental conditions in plaques. In periodontal diseases, the host response plays a major role in the outcome of the diseases. The present review addresses the pathogenic bacteria and microflora and the etiology of early childhood caries and childhood periodontal diseases.


Periodontal Disease Infective Endocarditis Dental Caries Dental Plaque Mutans Streptococcus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caufield PW, Cutter GR, Dasanayake AP (1993) Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J Dent Res 72: 37–45PubMedGoogle Scholar
  2. 2.
    Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44: 331–384PubMedGoogle Scholar
  3. 3.
    Petersen PE (2003) The world oral health report 2003. Continuous improvement of oral health in the 21st century-the approach of the WHO global oral health programme. Community Dent Oral Epidemiol 31(Suppl 1): 3–24PubMedCrossRefGoogle Scholar
  4. 4.
    Clarke JK (1924) On the bacterial factor in the aetiology of dental caries. Br J Exp Pathol 5: 141–147Google Scholar
  5. 5.
    Banas JA, Vickerman MM (2003) Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med 14: 89–99PubMedGoogle Scholar
  6. 6.
    Colby SM, Russell RRB (1997) Sugar metabolism by mutans streptococci. Soc Appl Bacterial Symp (Suppl) 83: 80S–88SGoogle Scholar
  7. 7.
    Kuramitsu HK, Wondrack L (1983) Insoluble glucan synthesis by Streptococcus mutans serotype c strains. Infect Immun 42: 763–770PubMedGoogle Scholar
  8. 8.
    Monchois V, Willemot RM, Monsan P (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23: 131–151PubMedCrossRefGoogle Scholar
  9. 9.
    Russell RR (1990) Molecular genetics of glucan metabolism in oral streptococci. Arch Oral Biol 35: 53S–58SPubMedCrossRefGoogle Scholar
  10. 10.
    Gustafsson BE, Quensel CE, Lanke LS, Lundqvist C, Grahnen H, Bonow BE, Krasse B (1954) The Vipeholm dental caries study. The effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol Scand 11: 232–264PubMedGoogle Scholar
  11. 11.
    Takeuchi M (1961) Epidemiological study on dental caries in Japanese children before, during and after World War II. Int Dent J 11: 443–457Google Scholar
  12. 12.
    Bowen WH, Amsbaugh SM, Monell-Torrens S, Brunelle J, Kuzmiak-Jones H, Cole MF (1980) A method to assess cariogenic potential of foodstuffs. J Am Dent Assoc 100: 677–681PubMedGoogle Scholar
  13. 13.
    Marsh PD (1991) Sugar, fluoride, pH and microbial homeostasis in dental plaque. Proc Finn Dent Soc 87: 515–525PubMedGoogle Scholar
  14. 14.
    Nyvad B, Kilian M (1990) Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res 24: 267–272PubMedGoogle Scholar
  15. 15.
    Little WA, Korts DC, Thomson LA, Bowen WH (1977) Comparative recovery of Streptococcus mutans on ten isolation media. J Clin Microbiol 5: 578–583PubMedGoogle Scholar
  16. 16.
    Liljemark WF, Okrent DH, Bloomquist CG (1976) Differential recovery of Streptococcus mutans from various mitis-salivarius agar preparations. J Clin Microbiol 4: 108–109PubMedGoogle Scholar
  17. 17.
    Emilson CG, Bratthall D (1976) Growth of Streptococcus mutans on various selective media. J Clin Microbiol 4: 95–98PubMedGoogle Scholar
  18. 18.
    Igarashi T, Yamamoto A, Goto N (1996) Direct detection of Streptococcus mutans in human dental plaque by polymerase chain reaction. Oral Microbiol Immunol 11: 294–298PubMedGoogle Scholar
  19. 19.
    Igarashi T, Yamamoto A, Goto N (2000) PCR for detection and identification of Streptococcus sobrinus. J Med Microbiol 49: 1069–1074PubMedGoogle Scholar
  20. 20.
    Okada M, Soda Y, Hayashi F, Doi T, Suzuki J, Miura K, Kozai K (2002) PCR detection of Streptococcus mutans and S. sobrinus in dental plaque samples from Japanese preschool children. J Med Microbiol 51: 443–447PubMedGoogle Scholar
  21. 21.
    Oho T, Yamashita Y, Shimazaki Y, Kushiyama M, Koga T (2000) Simple and rapid detection of Streptococcus mutans and Streptococcus sobrinus in human saliva by polymerase chain reaction. Oral Microbiol Immunol 15: 258–262PubMedCrossRefGoogle Scholar
  22. 22.
    Hoshino T, Kawaguchi M, Shimizu N, Hoshino N, Ooshima T, Fujiwara T (2004) PCR detection and identification of oral streptococci in saliva samples using gtf genes. Diagn Microbiol Infect Dis 48: 195–199PubMedCrossRefGoogle Scholar
  23. 23.
    Seki M, Yamashita Y, Shibata Y, Torigoe H, Tsuda H, Maeno M (2006) Effect of mixed mutans streptococci colonization on caries development. Oral Microbiol Immunol 21: 47–52PubMedCrossRefGoogle Scholar
  24. 24.
    ten Cate JM, Duijsters PPE (1983) Influence of fluoride in solution on tooth demineralization. I. Chemical Data. Caries Res 17: 193–199PubMedGoogle Scholar
  25. 25.
    Featherstone JDB, O’Reilly MM, Shariati M, Brugler S (1986) Enhancement of remineralization in vitro and in vivo. In: SA Leach (ed): Factors relating to demineralization and remineralization of the teeth. IRL press, Oxford, 23–34Google Scholar
  26. 26.
    Loesche WJ, Murray RJ, Mellberg JR (1973) The effect of topical acidulated fluoride on percentage of Streptococcus mutans and Streptococcus sanguis in interproximal plaque samples. Caries Res 7: 283–296PubMedGoogle Scholar
  27. 27.
    Yost KG, VanDemark PJ (1978) Growth inhibition of Streptococcus mutans and Leuconostoc mesenteroides by sodium fluoride and ionic tin. Appl Environ Microbiol 35: 920–924PubMedGoogle Scholar
  28. 28.
    Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiology 149: 279–294PubMedCrossRefGoogle Scholar
  29. 29.
    Sreebny LM (1982) Sugar availability, sugar consumption and dental caries. Community Dent Oral Epidemiol 10: 1–7PubMedCrossRefGoogle Scholar
  30. 30.
    Trahan L (1995) Xylitol: a review of its action on mutans streptococci and dental plaque — its clinical significance. Int Dent J 45(Suppl 1): 77–92PubMedGoogle Scholar
  31. 31.
    Berkowitz RJ (2003) Causes, treatment and prevention of early childhood caries: a microbiologic perspective. J Can Dent Assoc 69: 304–309PubMedGoogle Scholar
  32. 32.
    Grinderfjord M, Dahllof G, Nilsson B, Modeer T (1996) Stepwise prediction of dental caries in children up to 3.5 years of age. Caries Res 30: 256–266Google Scholar
  33. 33.
    Roeters FJ, van der Hoeven JS, Burgersdijk RC, Schaeken MJ (1995) Lactobacilli, mutants streptococci and dental caries: a longitudinal study in 2-year-old children up to the age of 5 years. Caries Res 29: 272–279PubMedCrossRefGoogle Scholar
  34. 34.
    Berkowitz RJ (2006) Mutans streptococci: acquisition and transmission. Pediatr Dent 28: 106–109PubMedGoogle Scholar
  35. 35.
    Wan AK, Seow WK, Purdie DM, Bird PS, Walsh LJ, Tudehope DI (2001) Oral colonization of Streptococcus mutans in six-month-old predentate infants. J Dent Res 80: 2060–2065PubMedCrossRefGoogle Scholar
  36. 36.
    Ohara-Nemoto Y, Kishi K, Satho M, Tajika S, Sasaki M, Namioka A, Kimura S (2005) Infective endocarditis caused by Granulicatella elegans originating in the oral cavity. J Clin Microbiol 43: 1405–1407PubMedCrossRefGoogle Scholar
  37. 37.
    Ramirez-Ronda CH (1978) Adherence of glucan-positive and glucan-negative streptococcal strains to normal and damaged heart valves. J Clin Invest 62: 805–814PubMedGoogle Scholar
  38. 38.
    Scheld WM, Valone JA, Sande MA (1978) Bacterial adherence in the pathogenesis of endocarditis. Interaction of bacterial dextran, platelets and fibrin. J Clin Invest 61: 1394–1404PubMedGoogle Scholar
  39. 39.
    Armitage GC (1999) Development of a classification system for periodontal diseases and conditions. Ann Periodontol 4: 1–6PubMedCrossRefGoogle Scholar
  40. 40.
    Genco RJ, Mergenhagen SE (eds) (1982) Host-parasite interactions in periodontal diseases. American Society for Microbiology, Washington, DCGoogle Scholar
  41. 41.
    Theilade E, Wright WH, Jensen SB, Löe H (1966) Experimental gingivitis in man. II. A longitudinal clinical and bacteriological investigation. J Periodontal Res 1: 1–13PubMedCrossRefGoogle Scholar
  42. 42.
    Bimstein E, Matsson L (1999) Growth and development considerations in the diagnosis of gingivitis and periodontitis in children. Pediatr Dent 21: 186–191PubMedGoogle Scholar
  43. 43.
    Sjodin B, Matsson L (1994) Marginal bone loss in the primary dentition. A survey of 7-9-year-old children in Sweden. J Clin Periodontol 21: 313–319PubMedCrossRefGoogle Scholar
  44. 44.
    Ranney RR (1993) Classification of periodontal diseases. Periodontology 2000 2: 13–25CrossRefGoogle Scholar
  45. 45.
    Clark RA, Kimball HR (1971) Defective granulocyte chemotaxis in the Chediak-Higashi syndrome. J Clin Invest 50: 2645–2652PubMedCrossRefGoogle Scholar
  46. 46.
    Tempel TR, Kimball HR, Kakehashi S, Amen C (1972) Host factors in periodontal manifestations in Chediak-Higashi syndrome. J Periodont Res 7(Suppl 10): 26–27Google Scholar
  47. 47.
    Miller ME, Oski FA, Harris MB (1971) Lazy leukocyte syndrome. A new disorder of neutrophil function. Lancet 1: 665–669PubMedCrossRefGoogle Scholar
  48. 48.
    Cohen DW, Morris AL (1961) Periodontal manifestation of cyclic neutropenia. J Periodont 32: 159–168Google Scholar
  49. 49.
    Clark RA, Klebanoff SJ (1978) Chronic granulomatous disease; studies of a family with impaired neutrophil chemotactic, metabolic and bactericidal function. Am J Med 65: 941–948PubMedCrossRefGoogle Scholar
  50. 50.
    Mowat A, Baum J (1971) Chemotaxis of polymorphonuclear leukocytes from patients with diabetes mellitus. N Engl J Med 284: 621–627PubMedCrossRefGoogle Scholar
  51. 51.
    Hill HR, Sauls HS, Dettloff JL, Quie PG (1974) Impaired leukotactic responsiveness in patients with juvenile diabetes mellitus. Clin Immunol Immunopathol 2: 395–403PubMedCrossRefGoogle Scholar
  52. 52.
    Kimura S, Yonemura T, Hiraga T, Okada H (1992) Flow cytometric evaluation of phagocytosis by peripheral blood polymorphonuclear leucocytes in human periodontal diseases. Arch Oral Biol 37: 495–501PubMedCrossRefGoogle Scholar
  53. 53.
    Kimura S, Yonemura T, Kaya H (1993) Increased oxidative product formation by peripheral blood polymorphonuclear leukocytes in human periodontal diseases. J Periodont Res 28: 197–203PubMedCrossRefGoogle Scholar
  54. 54.
    Bass DA, Olbrantz P, Szejda P, Seeds MC, McCall CE (1986) Subpopulations of neutrophils with increased oxidative product formation in blood of patients with infection. J Immunol 136: 860–866PubMedGoogle Scholar
  55. 55.
    Hamada S, Holt SC, McGhee JR (eds) (1991) Periodontal disease: Pathogens and host immune responses. Quintessence Publishing Co., TokyoGoogle Scholar
  56. 56.
    Genco R, Hamada S, Lehner T, McGhee J, Mergenhagen S (eds) (1994) Molecular pathogenesis of periodontal disease. ASM Press, Washington, DCGoogle Scholar
  57. 57.
    Amano A, Shizukuishi S, Horie H, Kimura S, Morisaki I, Hamada S (1998) Binding of Porphyromonas gingivalis fimbriae to proline-rich glycoproteins in parotid saliva via a domain shared by major salivary components. Infect Immun 66: 2072–2077PubMedGoogle Scholar
  58. 58.
    Kontani M, Ono H, Shibata H, Okamura Y, Tanaka T, Fujiwara T, Kimura S, Hamada S (1996) Cysteine protease of Porphyromonas gingivalis 381 enhances binding of fimbriae to cultured human fibroblasts and matrix proteins. Infect Immun 64: 756–762PubMedGoogle Scholar
  59. 59.
    Amano A, Nakamura T, Kimura S, Morisaki I, Nakagawa I, Kawabata S, Hamada S (1999) Molecular interactions of Porphyromonas gingivalis fimbriae with host proteins: kinetic analyses based on surface plasmon resonance. Infect Immun 67: 2399–2405PubMedGoogle Scholar
  60. 60.
    Hamada S, Amano A, Kimura S, Nakagawa I, Kawabata S, Morisaki I (1998) The importance of fimbriae in the virulence and ecology of some oral bacteria. Oral Microbiol Immunol 13: 129–138PubMedGoogle Scholar
  61. 61.
    Holt SC, Kesavalu L, Walker S, Genco CA (1999) Virulence factors of Porphyromonas gingivalis. Periodontol 2000 20: 168–238PubMedCrossRefGoogle Scholar
  62. 62.
    Potempa J, Banbula A, Travis J (2000) Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol 2000 24: 153–192CrossRefGoogle Scholar
  63. 63.
    Okada H, Shimabukuro Y, Kassai Y, Ito H, Matsuo T, Ebisu S, Harada Y (1988) The function of gingival lymphocytes on the establishment of human periodontitis. Adv Dent Res 2: 364–367PubMedGoogle Scholar
  64. 64.
    Kimura S, Koga T, Fujiwara T, Kontani M, Shintoku K, Kaya H, Hamada S (1995) Tyrosine protein phosphorylation in murine B lymphocytes by stimulation with lipopolysaccharide from Porphyromonas gingivalis. FEMS Microbiol Lett 130: 1–6PubMedGoogle Scholar
  65. 65.
    Newman MG, Socransky SS (1977) Predominant cultivable microbiota in periodontosis. J Periodontal Res 12: 120–128PubMedCrossRefGoogle Scholar
  66. 66.
    Kaplan JB, Schreiner HC, Furgang D, Fine DH (2002) Population structure and genetic diversity of Actinobacillus actinomycetemcomitans strains isolated from localized juvenile periodontitis patients. J Clin Microbiol 40: 1181–1187PubMedCrossRefGoogle Scholar
  67. 67.
    Kimura S, Ooshima T, Takiguchi M, Sasaki Y, Amano A, Morisaki I, Hamada S (2002) Periodontopathic bacterial infection in childhood. J Periodontol 73: 20–26PubMedCrossRefGoogle Scholar
  68. 68.
    Ooshima T, Nishiyama N, Hou B, Tamura K, Amano A, Kusumoto A, Kimura S (2003) Occurrence of periodontal bacteria in healthy children: a 2-year longitudinal study. Community Dent Oral Epidemiol 31: 417–425PubMedCrossRefGoogle Scholar
  69. 69.
    Dzink JL, Socransky SS, Haffajee AD (1988) The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases. J Clin Periodontol 15: 316–323PubMedCrossRefGoogle Scholar
  70. 70.
    Amano A, Kishima T, Kimura S, Takiguchi M, Ooshima T, Hamada S, Morisaki I (2000) Periodontopathic bacteria in children with Down syndrome. J Periodontol 71: 249–255PubMedCrossRefGoogle Scholar
  71. 71.
    Watson MR, Bretz WA, Loesche WJ (1994) Presence of Treponema denticola and Porphyromonas gingivalis in children correlated with periodontal disease of their parents. J Dent Res 73: 1636–1640PubMedGoogle Scholar
  72. 72.
    Umeda M, Miwa Z, Takeuchi Y, Ishizuka M, Huang Y, Noguchi K, Tanaka M, Takagi Y, Ishikawa I (2004) The distribution of periodontopathic bacteria among Japanese children and their parents. J Periodontal Res 39: 398–404PubMedCrossRefGoogle Scholar
  73. 73.
    Asikainen S, Chen C (1999) Oral ecology and person-to-person transmission of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontol 2000 20: 65–81CrossRefGoogle Scholar
  74. 74.
    Van Winkelhoff AJ, Boutaga K (2005) Transmission of periodontal bacteria and models of infection. J Clin Periodontol 32(Suppl 6): 16–27PubMedCrossRefGoogle Scholar
  75. 75.
    Tuite-McDonnell M, Griffen AL, Moeschberger ML, Dalton RE, Fuerst PA, Leys EJ (1997) Concordance of Porphyromonas gingivalis colonization in families. J Clin Microbiol 35: 455–461PubMedGoogle Scholar
  76. 76.
    Asikainen S, Chen C, Slots J (1996) Likelihood of transmitting Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in families with periodontitis. Oral Microbiol Immunol 11: 387–394PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Shigenobu Kimura
    • 1
  • Yuko Ohara-Nemoto
    • 2
  1. 1.Department of Oral MicrobiologyIwate Medical University School of DentistryMoriokaJapan
  2. 2.Division of Oral Molecular BiologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan

Personalised recommendations