Skip to main content

Implementation of Particle-scale Rotation in the 3-D Lattice Solid Model

  • Conference paper
  • First Online:
Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part I

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

In this study, 3-D Lattice Solid Model (LSMearth or LSM was extended by introducing particle-scale rotation. In the new model, for each 3-D particle, we introduce six degrees of freedom: Three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. By using quaternion algebra, relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely decided. After incorporating this mechanism and introducing bond breaking under torsion and bending into the LSM, several tests on 2-D and 3-D rock failure under uniaxial compression are carried out. Compared with the simulations without the single particle rotational mechanism, the new simulation results match more closely experimental results of rock fracture and hence, are encouraging. Since more parameters are introduced, an approach for choosing the new parameters is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, S., Mora, P., and Place, D. (2000), Extension of the Lattice Solid Model to incorporate temperature related effects, Pure Appl. Geophys. 157, 1867–1887.

    Article  Google Scholar 

  • Abe, S., Place, D., and Mora, P. (2004), A parallel implication of the Lattice Solid Model for the simulation of rock mechanics and earthquake dynamics, Pure Appl. Geophys. 161, 2265–2277.

    Article  Google Scholar 

  • Allen, M. P. and Tildesley, D. J. Computer Simulation of Lliquids (Oxford Science Press, Oxford, 1987).

    Google Scholar 

  • Attewell, P. B. and Farmer, I. W. Principles of Engineering Geology, (Chapman and Hall, London 1976).

    Google Scholar 

  • Bathurst, R. J. and Rothenburg, L. (1988), Micromechanical aspects of isotropic granular assemblies with linear contact interactions, J. Appl. Mech. 55, 17–23.

    Article  Google Scholar 

  • Brace, W. F. (1960), An extension of the Griffith theory of fracture to rocks, J. Geophys. Rev. 65, 3477–3480.

    Google Scholar 

  • Chang, S. H., Yun, K. J., and Lee, C. I. (2002), Modeling of fracture and damage in rock by the bondedparticle model, Geosystem Eng. 5(4), 113–120.

    Google Scholar 

  • Cundall, P. A. and Stack, O. D. L. (1979), A discrete numerical model for granular assemblies, Geotechnique 29, 47–65.

    Google Scholar 

  • Dullweber, A., Leimkuhler, B., and McLachlan, R. (1997), Symplectic splitting methods for rigid-body molecular dynamics, J. Chem. Phys. 107(15), 5840–5851.

    Article  Google Scholar 

  • Evans, D. J. (1977), On the representation of orientation space, Molecular Physics, 34, 317–325.

    Article  Google Scholar 

  • Evans, D. J. and Murad, S. (1977), Singularity free algorithm for molecular dynamic simulation of rigid polyatomice, Molecular physics 34, 327–331.

    Article  Google Scholar 

  • Fincham, D. (1992), Leapfrog rotational algorithm, Molec. Simul. 8, 1165.

    Article  Google Scholar 

  • Huzzard, J. F. and Young, R. P. (2000), Simulation acoustic emissions in bonded-particle models of rock, Inter. J. Rock Mech. Mining Sci. 37, 867–872.

    Article  Google Scholar 

  • Huzzard, J. F. and Young, R. P. (2002), 3-D numerical modeling of Acoustic emissions, Proc. 5th International Workshop on the Application of Geophysics in Rock Engineering, Toronto, Canada.

    Google Scholar 

  • Hu, J. C. and Angelier, J. (2004), Stress permutations: Three-dimensional distinct element analysis accounts for a common phenomenon in brittle tectonics. J. G. R. 109 (B9).

    Google Scholar 

  • Iwashita, K. and Oda, M. (1998), Rolling resistance at contacts in simulation of shear-band development by DEM, J. Eng. Mech. 124, 285–292.

    Article  Google Scholar 

  • Kol, A., Laird, B. B., and Leimkuhler, B. J. (1997). A symplectic method for rigid-body molecular simulation. J. Chem. Phys. 107(7), 2580–2588.

    Article  Google Scholar 

  • Kuhn, M. R. and Bagi, K. (2004). Contact rolling and deformation in granular media, Int. J. Solid Struc. 41, 5793–5820.

    Article  Google Scholar 

  • Kuipers, J. B. Quaternion and Rotation Sequences (Princeton University Press, Princeton, New Jersey. 1998).

    Google Scholar 

  • Latham, S., Abe, S., and Mora, P. (2002), Parallel 3D simulation of a fault gouge using the Lattice Solid Model.

    Google Scholar 

  • Langston, P. A., Al-Awamleh, M. A., Fraige, F. Y., and Asmar, B. N. (2004), Distinct element modeling of non-spherical frictionless particle flow, Chem. Eng. Sci. 59(2), 425–435.

    Article  Google Scholar 

  • Liu, K. X. and Gao, L. T. (2003), The application of discrete element method in solving three-dimensional impact dynamics problems, Acta Mech. Sol. Sin. 16, 256–261.

    Article  Google Scholar 

  • Mora, P. and Place, D. (1993), A lattice solid model for the nonlinear dynamics of earthquakes, Int. J. Mod. Phys. C4, 1059–1074.

    Google Scholar 

  • Mora, P. and Place, D. (1994), Simulation of the frictional stick-slip instability, Pure Appl. Geophys. 143, 61–87.

    Article  Google Scholar 

  • Mora, P., Wang, Y. C., Yin, C., and Place, D. (2002a), simulation of the load-unload response ratio and critical sensitivity in the Lattice Solid Model, Pure Appl. Geophys, 159, 2525–2536.

    Article  Google Scholar 

  • Mora, P. and Place, D. (2002b), Stress correlation function evolution in lattice solid elasto-dynamic model of shear and fracture zones and earthquake prediction Pure. Appl. Geophys. 159, 2413–2427.

    Article  Google Scholar 

  • Mora, P., Place, D., Abe, S., and JaumĂ©, S. Lattice solid simulation of the physics of earthquakes: the model, results and directions. In GeoComplexity and the Physics of Earthquakes (Geophysical Monograph series; no. 120), (eds. Rundle, J. B., Turcotte, D.L. and Klein, W.) pp. 105–125 (American Geophys, Union, Washington, DC 2000).

    Google Scholar 

  • Mora, P. and Place, D. (1999), The weakness of earthquake faults, Geophys. Res. Lett. 26, 123–126.

    Article  Google Scholar 

  • Mora, P. and Place, D. (1998), Numerical simulation of earthquake faults with gouge: Towards a comprehensive explanation for the heat flow paradox, J. Geophys. Res. 103 21, 067–21, 089.

    Google Scholar 

  • Morgan, J. K. (2001), Distinct element simulations of granular shear zones: Micromechanics of localization and frictional behavior. In 2nd ACES Workshop Proceedings (eds.) M. MatsĂşura, K. Nakajima, and P. Mora, APEC Cooperation for Earthquake Simulation, 83–90.

    Google Scholar 

  • Oda, M., Konishi, J., and Nemat-Nasser, S. (1982), Experimental micromechanical evaluation of the strength of granular materials: Effects of particle rolling, Mech. Mater. 1, 269–283.

    Article  Google Scholar 

  • Oda, M. and Kazama, H. (1998), Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Geotechnique 48(4), 465–481.

    Article  Google Scholar 

  • Omelyan, I. P. (1998a), Algorithm for numerical integration of the rigid-body equations of motion, Phys. Rev. E 58(1), 1169–1172.

    Article  Google Scholar 

  • Omelyan, I. P. (1998b), On the numerical integration of motion for rigid polyatomics: The modified quaternion approach, Comp. Phys. 12(1), 97–103.

    Article  Google Scholar 

  • Place, D. and Mora, P. (1999), A lattice solid model to simulate the physics of rocks and earthquakes: Incorporation of friction, J. Comp. Phys. 150, 1–41.

    Article  Google Scholar 

  • Place, D. and Mora, P. (2000), Numerical simulation of localization in a fault zone, Pure Appl. Geophys. 157, 1821–1845.

    Article  Google Scholar 

  • Place, D. and Mora, P. (2001), A random lattice solid model for simulation of fault zone dynamics and fracture process. In Bifurcation and Localization Theory for Soil and Rock′99 (eds. Muhlhaus, H.B., Dyskin, A.V., and Pasternak, E.) (AA Balkema, Rotterdam/ Brookfield, 2001).

    Google Scholar 

  • Place, D., Lombard, F., Mora, P., and Abe, S. (2002), Simulation of the micro-physics of rocks using LSMearth, Pure Appl. Geophys. 159, 1933–1950.

    Article  Google Scholar 

  • Prochazka, P. P. (2004), Application of discrete element methods to fracture mechanics of rock bursts, Eng. Fracture Mech. 71, 601–618.

    Article  Google Scholar 

  • Potyondy, D. and Cundall, P. (2004), A bonded-particle model for rock, Internat. J. Rock Mech. Mining Sci. 41, 1329–1364.

    Article  Google Scholar 

  • Scott, D. R. (1996), Seismicity and stress rotation in a granular model of the brittle crust, Nature 381, 592–595.

    Article  Google Scholar 

  • Sheng, Y., Lawrence, C. J., and Briscoe, B. J. (2004), Thornton, numerical studies of uniaxial powder compaction process by 3D DEM, Eng. Comp. 21, 304–317.

    Article  Google Scholar 

  • Sitharam, T. G. (2000), Numerical simulation of particulate materials using discrete element modeling, Current Science 78(7), 876–886.

    Google Scholar 

  • Sokolnikoff, I. S., Mathematical Theory of Elasticity, 2nd ed. (New York, McGraw-Hill, 1956).

    Google Scholar 

  • Toomey, A. and Bean, C. J. (2000), Numerical simulation of seismic waves using a discrete particle scheme, Geophys. J. Inter. 141, 595–604.

    Article  Google Scholar 

  • Tordesillas, A. and Walsh, D.C.S. (2002), Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media, Powder Technology 124, 106–111.

    Article  Google Scholar 

  • Wang, Y. C., Yin, X. C., Ke, F. J., Xia, M. F., and Peng, K. Y. (2000), Numerical simulation of rock failure and earthquake process on mesoscopic scale, Pure Appl. Geophys. 157, 1905–1928.

    Article  Google Scholar 

  • Wang, Y. C., Mora, P., Yin, C., and Place, D. (2004), Statistical tests of Load-Unload Response Ratio signals by Lattice Solid Model: Implication to tidal triggering and earthquake prediction, Pure Appl. Geophys. 161, 1829–1839.

    Google Scholar 

  • Wang, Y. C. and Mora, P. (2006), A complete scheme for modeling 3-D interactive rigid body motions with six degrees of freedom and full rigidity, to be submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäauser Verlag

About this paper

Cite this paper

Wang, Y., Abe, S., Latham, S., Mora, P. (2006). Implementation of Particle-scale Rotation in the 3-D Lattice Solid Model. In: Yin, Xc., Mora, P., Donnellan, A., Matsu’ura, M. (eds) Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part I. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7992-6_4

Download citation

Publish with us

Policies and ethics