Skip to main content

Pythagore’s Dilemma, Symbolic-Numeric Computation, and the Border Basis Method

  • Conference paper

Part of the book series: Trends in Mathematics ((TM))

Abstract

In this tutorial paper, we first discuss the motivation of doing symbolic-numeric computation, with the aim of developing efficient and certified polynomial solvers. We give a quick overview of fundamental algebraic properties, used to recover the roots of a polynomial system, when we know the multiplicative structure of its quotient algebra. Then, we describe the border basis method, justifying and illustrating the approach on several simple examples. In particular, we show its usefulness in the context of solving polynomial systems, with approximate coefficients. The main results are recalled and we prove a new result on the syzygies, naturally associated with commutation properties. Finally, we describe an algorithm and its implementation for computing such border bases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Alonso, E. Becker, M.F. Roy and T. Wörmann. Zeros, multiplicities and idempotents for zero-dimensional systems. In L. González-Vega and T. Recio, editors, Algorithms in Algebraic Geometry and Applications, volume 143 of Prog. in Math., pages 1–15. Birkhäuser, Basel, 1996.

    Google Scholar 

  2. W. Auzinger and H.J. Stetter. An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. In Proc. Intern. Conf. on Numerical Math., volume 86 of Int. Series of Numerical Math, pages 12–30. Birkhäuser, Basel, 1988.

    Google Scholar 

  3. D. Bini. Numerical computation of polynomial zeros by means of Aberth’s method. Numerical Algorithms, 13, 1996.

    Google Scholar 

  4. B. Buchberger. Gröbner bases: An algebraic method in ideal theory. In N. K. Bose, editor, Multidimensional System Theory, pages 184–232. Reidel Publishing Co., 1985.

    Google Scholar 

  5. R.M. Corless, P.M. Gianni and B.M. Trager. A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In W. W. Küchlin, editor, Proc. ISSAC’ 97, pages 133–140. ACM Press, New York, 1997.

    Chapter  Google Scholar 

  6. D. Cox, J. Little and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992.

    MATH  Google Scholar 

  7. J. Demmel, J. Gilbert and X.S. Li. An asynchronous parallel supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix Anal. Appl., 20(4): 915–952, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Elkadi and B. Mourrain. Introduction à la résolution des systèmes d’équations algébriques, 2003. Notes de cours, Univ. de Nice (310 p.).

    Google Scholar 

  9. P.A. Fuhrmann. A Polynomial Approach to Linear Algebra. Springer-Verlag, Berlin, 1996.

    MATH  Google Scholar 

  10. A. Kehrein and M. Kreuzer. A characterisation of border bases. J. Pure and Applied Algebra, 196: 251–270, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Kehrein, M. Kreuzer and L. Robbiano. An algebraist’s view on border bases. In A. Dickenstein and I. Emiris, editors, Solving Polynomial Equations: Foundations, Algorithms, and Applications, volume 14 of Algorithms and Computation in Mathematics, pages 169–202. Springer-Verlag, Berlin, 2005.

    Chapter  Google Scholar 

  12. G. Lecerf. Computing an equidimensional decomposition of an algebraic varety bymeans of geometric resolutions. In Proc. ISSAC 2000, pages 209–216. ACM Press, New York, 2000.

    Chapter  Google Scholar 

  13. F.S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge Univ. Press, Cambridge, 1916.

    MATH  Google Scholar 

  14. B. Mourrain. Computing isolated polynomial roots by matrix methods. J. Symbolic Computation, Special Issue on Symbolic-Numeric Algebra for Polynomials, 26(6): 715–738, 1998.

    MATH  MathSciNet  Google Scholar 

  15. B. Mourrain. A new criterion for normal form algorithms. In M. Fossorier, H. Imai, S. Lin, and A. Poli, editors, Proc. AAECC, volume 1719 of LNCS, pages 430–443. Springer-Verlag, Berlin, 1999.

    Google Scholar 

  16. B. Mourrain and V.Y. Pan. Multivariate polynomials, duality and structured matrices. J. Complexity, 16(1): 110–180, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Mourrain and P. Trébuchet. Solving projective complete intersection faster. In C. Traverso, editor, Proc. Intern. Symp. on Symbolic and Algebraic Computation, pages 231–238. ACM Press, New York, 2000.

    Google Scholar 

  18. B. Mourrain and P. Trébuchet. Algebraic methods for numerical solving. In Proc. 3rd International Workshop on Symbolic and Numeric Algorithms for Scientific Computing’ 01 (Timisoara, Romania), pages 42–57, 2002.

    Google Scholar 

  19. B. Mourrain and P. Trébuchet. Generalised normal forms and polynomial system solving. In M. Kauers, editor, Proc. Intern. Symp. on Symbolic and Algebraic Computation, pages 253–260. ACM Press, New York, 2005.

    Chapter  Google Scholar 

  20. B. Mourrain and P. Trébuchet. Generalised normal forms and polynomial system solving. Technical Report 5471, INRIA Sophia-Antipolis, 2005.

    Google Scholar 

  21. J. Renegar. On the computational complexity and geometry of the first order theory of reals (I, II, III). J. Symbolic Computation, 13(3): 255–352, 1992.

    MATH  MathSciNet  Google Scholar 

  22. F. Rouillier. Solving zero-dimensional polynomial systems throuhg Rational Univariate Representation. App. Alg. Eng. Com. Comp., 9(5): 433–461, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  23. H.J. Stetter. Eigenproblems are at the heart of polynomial system solving. SIGSAM Bulletin, 30(4): 22–25, 1996.

    Article  MATH  Google Scholar 

  24. H.J. Stetter. Numerical Polynomial Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2004.

    MATH  Google Scholar 

  25. P. Trébuchet. Vers une résolution stable et rapide des équations algébriques. PhD thesis, Université Pierre et Marie Curie, 2002.

    Google Scholar 

  26. W.V. Vasconcelos. Computational Methods in Commutative Algebra and Algebraic Geometry, volume 2 of Algorithms and Computation in Mathematics. Springer-Verlag, New York, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Mourrain, B. (2007). Pythagore’s Dilemma, Symbolic-Numeric Computation, and the Border Basis Method. In: Wang, D., Zhi, L. (eds) Symbolic-Numeric Computation. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7984-1_14

Download citation

Publish with us

Policies and ethics