Skip to main content

Extension of Operator Lipschitz and Commutator Bounded Functions

  • Conference paper

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 171))

Abstract

Let (B(H) ‖·‖) be the algebra of all bounded operators on an infinite-dimensional Hilbert space H. Let B(H)sa be the set of all selfadjoint operators in B(H). Throughout the paper we denote by α a compact subset of ℝ and by B(H)sa(α) the set of all operators in B(H)sa with spectrum in α:

$$ B(H)_{sa} (\alpha ) = \{ A = A^* \in B(H): Sp(A) \subseteq \alpha \} . $$

We will use similar notations A sa, A sa(α) for a Banach *-algebra A. Each bounded Borel function g on α defines, via the spectral theorem, a map Ag(A) from B(H)sa(α) into B(H). Various smoothness conditions when imposed on this map define the corresponding classes of operator-smooth functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Blackadar and J. Cuntz, Differentiable Banach algebra norms and smooth subalgebras of C*-algebras, J. Operator Theory, 26 (1991), 255–282.

    MATH  MathSciNet  Google Scholar 

  2. R. Bhatia and P. Rosenthal, How and why to solve the equation AX − XB = Y, Bull. London Math. Soc., 29 (1997), no. 1, 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.S. Birman and M.Z. Solomyak 1, Stieltjes double-integral operators. II, (Russian) Prob. Mat. Fiz. 2 (1967), 26–60.

    MATH  Google Scholar 

  4. M.S. Birman and M.Z. Solomyak, Stieltjes double-integral operators. III, (Russian) Prob. Mat. Fiz. 6 (1973), 28–54.

    Google Scholar 

  5. J.L. Daletskii and S.G. Krein, Integration and differentiation of functions of hermitian operators and applications to the theory of perturbations, A.M.S. Translations (2) 47 (1965), 1–30.

    Google Scholar 

  6. E.B. Davies, Lipschitz continuity of functions of operators in the Schatten classes, J. London Math. Soc., 37 (1988), 148–157.

    Article  MATH  MathSciNet  Google Scholar 

  7. Yu.B. Farforovskaya, Example of a Lipschitz function of selfadjoint operators that gives a non-nuclear increment under a nuclear perturbation, J. Soviet Math., 4 (1975), 426–433.

    Article  Google Scholar 

  8. I.C. Gohberg and M.G. Krein, Introduction to the theory of linear non-selfadjoint operators in Hilbert space, Izdat. “Nauka”, Moscow 1965 448 pp.

    Google Scholar 

  9. B.E. Johnson and J.P. Williams, The range of a normal derivation, Pacific J. Math., 58 (1975), 105–122.

    MathSciNet  Google Scholar 

  10. E. Kissin and V.S. Shulman, Differential properties of some dense subalgebras of C*-algebras, Proc. Edinburgh Math. Soc., Proc. Edinburgh Math. Soc., 37 (1994), 399–422.

    MATH  MathSciNet  Google Scholar 

  11. E. Kissin and V.S. Shulman, On the range inclusion of normal derivations: variations on a theme by Johnson, Williams and Fong, Proc. London Math. Soc., 83 (2001), 176–198.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Kissin and V.S. Shulman, Classes of operator-smooth functions. II. Operator-differentiable functions, Integral Equations Operator Theory 49 (2004), 165–210.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Kissin and V.S. Shulman, Classes of operator-smooth functions. I. Operator-Lipschitz functions, Proc. Edinb. Math. Soc., 48 (2005), 151–173.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. de Pagter, F.A. Sukochev, H. Witvliet, Double operator integrals, J. Funct. Anal., 192 (2002), 52–111.

    Article  MATH  MathSciNet  Google Scholar 

  15. V.V. Peller, Hankel operators in the theory of perturbations of unitary and selfadjoint operators, Funktsional. Anal. i Prilozhen., 19 (1985), 37–51, 96.

    MathSciNet  Google Scholar 

  16. R. Powers, A remark on the domain of an unbounded derivation of a C*-algebra, J. Functional Analysis 18 (1975), 85–95.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Radjavi and P. Rosenthal, Invariant Subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973, xi+219 pp.

    Google Scholar 

  18. J.P. Williams, Derivation ranges: open problems, in “Topics in modern operator theory (Timişoara/Herculane, 1980)”, pp. 319–328, Operator Theory: Adv. Appl., 2, Birkhäuser, Basel-Boston, Mass., 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Kissin, E., Shulman, V.S., Turowska, L.B. (2006). Extension of Operator Lipschitz and Commutator Bounded Functions. In: Dritschel, M.A. (eds) The Extended Field of Operator Theory. Operator Theory: Advances and Applications, vol 171. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7980-3_11

Download citation

Publish with us

Policies and ethics