Role of α6β1 integrin in leukocyte adhesion and transmigration

  • Mathieu-Benoit Voisin
  • Sussan Nourshargh
Part of the Progress in Inflammation Research book series (PIR)


Integrins are a family of heterodimeric cell-surface adhesion and signaling molecules each composed of an α and a β subunit. At present 18 α and 8 β subunits have been identified giving rise to 24 distinct integrin molecules. Many members of this family, primarily integrins containing a β1 subunit, act as receptors for extracellular matrix proteins, e.g., α1β1 and α2β1 are key receptors for collagen while α3β1 and α6β1 are key receptors for laminin. The integrin α6β1 (VLA-6, CD49f/CD29) was originally identified on platelets but is now known to be expressed on numerous cell types including epithelial and endothelial cells and is indeed the key leukocyte laminin receptor. Its principal functional role relates to regulation of cell adhesion and motility, and, in line with this, α6β1 interaction with its ligands leads to cellular cytoskeletal rearrangement and polarization. In the context of inflammatory events, the ability of α6β1 to bind vascular laminins has led to much interest in the role of this integrin in regulation of leukocyte migration through the vascular basement membrane (BM). In blood vessels, the BM forms a thin protein sheet that underlies the endothelium and encases the pericytes/smooth muscle cells. Major constituents of this BM are laminins (laminin 8 and laminin 10) and collagen IV, which form two independent networks that are interconnected by molecules such as nidogens (nidogen-1 and nidogen-2) and the large heparan sulfate proteoglycan, perlecan [1]. In contrast to our growing knowledge of the molecules and mechanisms that mediate leukocyte migration through the endothelium [2], less is known about the mechanisms that mediate and regulate leukocyte migration through the vascular BM.


Leukocyte Adhesion Bullous Pemphigoid Neutrophil Migration Leukocyte Migration Integrin Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Timpl R (1996) Macromolecular organization of basement membranes. Curr Opin Cell Biol 8: 618–624PubMedCrossRefGoogle Scholar
  2. 2.
    Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 4: 327–334Google Scholar
  3. 3.
    Tamura RN, Rozzo C, Starr L, Chambers J, Reichardt LF, Cooper HM, Quaranta V (1990) Epithelial integrin α6β4: complete primary structure of α6 and variant forms of β4. J Cell Biol 111: 1593–1604PubMedCrossRefGoogle Scholar
  4. 4.
    Hogervorst F, Kuikman I, van Kessel AG, Sonnenberg A (1991) Molecular cloning of the human α6 integrin subunit. Alternative splicing of α6 mRNA and chromosomal localization of the α6 and β4 genes. Eur J Biochem 199: 425–433PubMedCrossRefGoogle Scholar
  5. 5.
    Hogervorst F, Admiraal LG, Niessen C, Kuikman I, Janssen H, Daams H, Sonnenberg A (1993) Biochemical characterization and tissue distribution of the A and B variants of the integrin α6 subunit. J Cell Biol 121: 179–191PubMedCrossRefGoogle Scholar
  6. 6.
    Davis TL, Rabinovitz I, Futscher BW, Schnolzer M, Burger F, Liu Y, Kulesz-Martin M, Cress AE (2001) Identification of a novel structural variant of the α6 integrin. J Biol Chem 276: 26099–26106PubMedCrossRefGoogle Scholar
  7. 7.
    Demetriou MC, Cress AE (2004) Integrin clipping: a novel adhesion switch? J Cell Biochem 91: 26–35PubMedCrossRefGoogle Scholar
  8. 8.
    Sonnenberg A, Modderman PW, Hogervorst F (1988) Laminin receptor on platelets is the integrin VLA-6. Nature 336: 487–489PubMedCrossRefGoogle Scholar
  9. 9.
    Yannanello-Brown J, Wewer U, Liotta L, Madri JA (1988) Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration. J Cell Biol 106: 1773–1786CrossRefGoogle Scholar
  10. 10.
    Schaapveld RQ, Borradori L, Geerts D, van Leusden MR, Kuikman I, Nievers MG, Niessen CM, Steenbergen RD, Snijders PJ, Sonnenberg A (1998) Hemidesmosome formation is initiated by the β4 integrin subunit, requires complex formation of β4 and HD1/plectin, and involves a direct interaction between β4 and the bullous pemphigoid antigen 180. J Cell Biol 142: 271–284PubMedCrossRefGoogle Scholar
  11. 11.
    Cid MC, Esparza J, Schnaper HW, Juan M, Yague J, Grant DS, Urbano-Marquez A, Hoffman GS, Kleinman HK (1999) Estradiol enhances endothelial cell interactions with extracellular matrix proteins via an increase in integrin expression and function. Angiogenesis 3: 271–280PubMedCrossRefGoogle Scholar
  12. 12.
    Shimizu Y, van Seventer GA, Horgan KJ, Shaw S (1990) Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibronectin or VLA-6 with laminin. J Immunol 145: 59–67PubMedGoogle Scholar
  13. 13.
    Schweighoffer T, Luce GE, Tanaka Y, Shaw S (1994) Differential expression of integrins α6 and α4 determines pathways in human peripheral CD4+ T cell differentiation. Cell Adhes Commun 2: 403–415PubMedGoogle Scholar
  14. 14.
    Ambrose HE, Wagner SD (2004) α6-integrin is expressed on germinal centre B cells and modifies growth of a B-cell line. Immunology 111: 400–406PubMedCrossRefGoogle Scholar
  15. 15.
    Shaw LM, Messier JM, Mercurio AM (1990) The activation dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the a6βl integrin. J Cell Biol 110: 2167–2174PubMedCrossRefGoogle Scholar
  16. 16.
    Wei J, Shaw LM, Mercurio AM (1998) Regulation of mitogen-activated protein kinase activation by the cytoplasmic domain of the α6 integrin subunit. J Biol Chem 273: 5903–5907PubMedCrossRefGoogle Scholar
  17. 17.
    Pedraza C, Geberhiwot T, Ingerpuu S, Assefa D, Wondimu Z, Kortesmaa J, Tryggvason K, Virtanen I, Patarroyo M (2000) Monocytic cells synthesize, adhere to, and migrate on lamimn-8 (α4β1γ1). J Immunol 165: 5831–5838PubMedGoogle Scholar
  18. 18.
    Bohnsack JF (1992) CD11/CD18-independent neutrophil adherence to laminin is mediated by the integrin VLA-6. Blood 79: 1545–1552PubMedGoogle Scholar
  19. 19.
    Rieu P, Lesavre P, Halbwachs-Mecarelli L (1993) Evidence for integrins other than β2 on polymorphonuclear neutrophils: expression of α6β1 heterodimer. J Leukoc Biol 53: 576–582PubMedGoogle Scholar
  20. 20.
    Georas SN, McIntyre BW, Ebisawa M, Bednarczyk JL, Sterbinsky SA, Schleimer RP, Bochner BS (1993) Expression of a functional laminin receptor α6β1 (very late activation antigen-6) on human eosinophils. Blood 82: 2872–2879PubMedGoogle Scholar
  21. 21.
    Ruiz P, Wiles MV, Imhof BA (1995) α6 integrins participate in pro-T cell homing to the thymus. Eur J Immunol 25: 2034–2041PubMedCrossRefGoogle Scholar
  22. 22.
    Chang AC, Salomon DR, Wadsworth S, Hong MJ, Mojcik CF, Otto S, Shevach EM, Coligan JE (1995) α3β1 and a6β1 integrins mediate laminin/merosin binding and function as costimulatory molecules for human thymocyte proliferation. J Immunol 154: 500–510PubMedGoogle Scholar
  23. 23.
    Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180: 487–502PubMedCrossRefGoogle Scholar
  24. 24.
    Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85: 979–1000PubMedCrossRefGoogle Scholar
  25. 25.
    Kikkawa Y, Sanzen N, Fujiwara H, Sonnenberg A, Sekiguchi K (2000) Integrin binding specificity of laminin-10/11: laminin-10/11 are recognized by α3β1, α6β1, and α6β4 integrins. J Cell Sci 113: 869–876PubMedGoogle Scholar
  26. 26.
    Gonzalez AM, Gonzales M, Herron GS, Nagavarapu U, Hopkinson SB, Tsuruta D, Jones JC (2002) Complex interactions between the laminin α4 subunit and integrins regulate endothelial cell behaviour in vitro and angiogenesis in vivo. Proc Natl Acad Sci USA 99: 16075–16080PubMedCrossRefGoogle Scholar
  27. 27.
    Nishiuchi R, Murayama O, Fujiwara H, Gu J, Kawakami T, Aimoto S, Wada Y, Sekiguchi K (2003) Characterization of the ligand-binding specificities of integrin α3β1 and α6β1 using a panel of purified laminin isoforms containing distinct α chains. J Biochem 134:497–504PubMedCrossRefGoogle Scholar
  28. 28.
    Wei J, Shaw LM, Mercurio AM (1997) Integrin signalling in leukocytes: lessons from the α6β1 integrin. J Leukoc Biol 61: 397–407PubMedGoogle Scholar
  29. 29.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687PubMedCrossRefGoogle Scholar
  30. 30.
    Shaw LM, Mercurio AM (1994) Regulation of cellular interactions with laminin by integrin cytoplasmic domains: the A and B structural variants of the α6β1 integrin differentially modulate the adhesive strength, morphology, and migration of macrophages. Mol Biol Cell 5: 679–690PubMedGoogle Scholar
  31. 31.
    Shaw LM, Turner CE, Mercurio AM (1995) The α6Aβ1 and α6Bβ1 integrin variants signal differences in the tyrosine phosphorylation of paxillin and other proteins. J Biol Chem 270: 23648–23652PubMedCrossRefGoogle Scholar
  32. 32.
    Sastry SK, Lakonishok M, Wu S, Truong TQ, Huttenlocher A, Turner CE, Horwitz AF (1999) Quantitative changes in integrin and focal adhesion signalling regulate myoblast cell cycle withdrawal. J Cell Biol 144: 1295–1309PubMedCrossRefGoogle Scholar
  33. 33.
    Tani TT, Mercurio AM (2001) PDZ interaction sites in integrin a subunits. T14853, TIP/GIPC binds to a type I recognition sequence in α6A/α5 and a novel sequence in α6B. J Biol Chem 276: 36535–36542PubMedCrossRefGoogle Scholar
  34. 34.
    El Mourabit H, Poinat P, Koster J, Sondermann H, Wixler V, Wegener E, Laplantine E, Geerts D, Georges-Labouesse E, Sonnenberg A, Aumailley M (2002) The PDZ domain of TIP-2/GIPC interacts with the C-terminus of the integrin α5 and α6 subunits. Matrix Biol 21: 207–214PubMedCrossRefGoogle Scholar
  35. 35.
    Ferletta M, Kikkawa Y, Yu H, Talts JF, Durbeej M, Sonnenberg A, Timpl R, Campbell KP, Ekblom P, Genersch E (2003) Opposing roles of integrin α6Aβ1 and dystroglycan in laminin-mediated extracellular signal-regulated kinase activation. Mol Biol Cell 14: 2088–2103PubMedCrossRefGoogle Scholar
  36. 36.
    Simms H, D’Amico R (1995) Regulation of polymorphonuclear neutrophil CD16 and CD11b/CD18 expression by matrix proteins during hypoxia is VLA-5, VLA-6 dependent. J Immunol 155: 4979–4990PubMedGoogle Scholar
  37. 37.
    Schottelndreier H, Potter BV, Mayr GW, Guse AH (2001) Mechanisms involved in α6β1-integrin-mediated Ca2+signalling. Cell Signal 13: 895–899PubMedCrossRefGoogle Scholar
  38. 38.
    Woods ML, Shimizu Y (2001) Signalling networks regulating β1 integrin-mediated adhesion of T lymphocytes to extracellular matrix. J Leukoc Biol 69: 874–880.PubMedGoogle Scholar
  39. 39.
    Berditchevski F, Zutter MM, Hemler ME (1996) Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins). Mol Biol Cell 7: 193–207PubMedGoogle Scholar
  40. 40.
    Sterk LM, Geuijen CA, van den Berg JG, Claessen N, Weening JJ, Sonnenberg A (2002) Association of the tetraspanin CD151 with the laminin-binding integrins α3β1, α6β1, α6β4 and α7β1 in cells in culture and in vivo. J Cell Sci 115: 1161–1173PubMedGoogle Scholar
  41. 41.
    Brown EJ (2002) Integrin-associated proteins. Curr Opin Cell Biol 14: 603–607PubMedCrossRefGoogle Scholar
  42. 42.
    Demetriou MC, Pennington ME, Nagle RB, Cress AE (2004) Extracellular α6 integrin cleavage by urokinase-type plasminogen activator in human prostate cancer. Exp Cell Res 294: 550–558PubMedCrossRefGoogle Scholar
  43. 43.
    Lammerding J, Kazarov AR, Huang H, Lee RT, Hemler ME (2003) Tetraspanin CD151 regulates α6β1 integrin adhesion strengthening. Proc Natl Acad Sci USA 100: 7616–7621PubMedCrossRefGoogle Scholar
  44. 44.
    Kitayama J, Ikeda S, Kumagai K, Saito H, Nagawa H (2000) α6β1 integrin (VLA-6) mediates leukocyte tether and arrest on laminin under physiological shear flow. Cell Immunol 199: 97–103PubMedCrossRefGoogle Scholar
  45. 45.
    Abitorabi MA, Pachynski RK, Ferrando RE, Tidswell M, Erle DJ (1997) Presentation of integrins on leukocyte microvilli: a role for the extracellular domain in determining membrane localization. J Cell Biol 139: 563–571PubMedCrossRefGoogle Scholar
  46. 46.
    Dangerfield J, Larbi KY, Huang MT, Dewar A, Nourshargh S (2002) PECAM-1 (CD31) homophilic interaction up-regulates α6β1 on transmigrated neutrophils in vivo and plays a functional role in the ability of alpha6 integrins to mediate leukocyte migration through the perivascular basement membrane. J Exp Med 196: 1201–1211PubMedCrossRefGoogle Scholar
  47. 47.
    Wang S, Dangerfield JP, Young RE, Nourshargh S (2005) PECAM-1, a6 integrins and neutrophil elastase cooperate in mediating neutrophil transmigration. J Cell Sci 118: 2067–2076PubMedCrossRefGoogle Scholar
  48. 48.
    Roussel E, Gingras MC (1997) Transendothelial migration induces rapid expression on neutrophils of granule-release VLA6 used for tissue infiltration. J Leukoc Biol 62: 356–362PubMedGoogle Scholar
  49. 49.
    Kitayama J, Hidemura A, Saito H, Nagawa H (2000) Shear stress affects migration behavior of polymorphonuclear cells arrested on endothelium. Cell Immunol 203: 39–46PubMedCrossRefGoogle Scholar
  50. 50.
    Gao JX, Wilkins J, Issekutz AC (1995) Migration of human polymorphonuclear leukocytes through a synovial fibroblast barrier is mediated by both beta2 (CD11/CD18) integrins and the beta 1 (CD29) integrins VLA-5 and VLA-6. Cell Immunol 163: 178–186PubMedCrossRefGoogle Scholar
  51. 51.
    Sixt M, Hallmann R, Wendler O, Scharffetter-Kochanek K, Sorokin LM (2001) Cell adhesion and migration properties of β2-integrin negative polymorphonuclear granulocytes on defined extracellular matrix molecules. Relevance for leukocyte extravasation. J Biol Chem 276: 18878–18887PubMedCrossRefGoogle Scholar
  52. 52.
    Georges-Labouesse E, Messaddeq N, Yehia G, Cadalbert L, Dierich A, Le Meur M (1996) Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet 13: 370–373PubMedCrossRefGoogle Scholar
  53. 53.
    Gimond C, Baudoin C, van der Neut R, Kramer D, Calafat J, Sonnenberg A (1998) Cre-loxP-mediated inactivation of the α6A integrin splice variant in vivo: evidence for a specific functional role of α6A in lymphocyte migration but not in heart development. J Cell Biol 143: 253–266PubMedCrossRefGoogle Scholar
  54. 54.
    Borland G, Cushley W (2004) Positioning the immune system: unexpected roles for α6-integrins. Immunology 111: 381–383PubMedCrossRefGoogle Scholar
  55. 55.
    Friedrichs K, Ruiz P, Franke F, Gille I, Terpe HJ, Imhof BA (1995) High expression level of α6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res 55: 901–906PubMedGoogle Scholar
  56. 56.
    Rabinovitz I, Nagle RB, Cress AE (1995) Integrin α6 expression in human prostate carcinoma cells is associated with a migratory and invasive phenotype in vitro and in vivo. Clin Exp Metastasis 13: 481–491PubMedCrossRefGoogle Scholar
  57. 57.
    Qian H, Tryggvason K, Jacobsen SE, Ekblom M (2006) Contribution of α6 integrins to hematopoietic stem and progenitor cell homing to bone marrow and collaboration with α4 integrins. Blood 107: 3503–3510PubMedCrossRefGoogle Scholar
  58. 58.
    Ridger VC, Wagner BE, Wallace WA, Hellewell PG (2001) Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. J Immunol 166: 3484–3490PubMedGoogle Scholar
  59. 59.
    Dangerfield JP, Wang S, Nourshargh S (2005) Blockade of α6 integrin inhibits IL-1β-but not TNFα-induced neutrophil transmigration in vivo. J Leukoc Biol 77: 159–165PubMedCrossRefGoogle Scholar
  60. 60.
    Wakelin MW, Sanz MJ, Dewar A, Albelda SM, Larkin SW, Boughton-Smith N, Williams TJ, Nourshargh S (1996) An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J Exp Med 184: 229–239PubMedCrossRefGoogle Scholar
  61. 61.
    Thompson RD, Noble KE, Larbi KY, Dewar A, Duncan GS, Mak TW, Nourshargh S (2001) Platelet-endothelial cell adhesion molecule-1 (PECAM-l)-deficient mice demonstrate a transient and cytokine-specific role for PECAM-1 in leukocyte migration through the perivascular basement membrane. Blood 97: 1854–1860PubMedCrossRefGoogle Scholar
  62. 62.
    Nourshargh S, Marelli-Berg FM (2005) Transmigration through venular walls: a key regulator of leukocyte phenotype and function. Trends Immunol 16: 157–165CrossRefGoogle Scholar
  63. 63.
    Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C, Tran M, Maxwell PH, Sorokin L, Nourshargh S (2006) Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med 203:1519–1532PubMedCrossRefGoogle Scholar
  64. 64.
    Inoue O, Suzuki-Inoue K, McCarty OJ, Moroi M, Ruggeri ZM, Kunicki TJ, Ozaki Y, Watson SP (2006) Laminin stimulates spreading of platelets through integrin α6β1-dependent activation of GPVI. Blood 107: 1405–1412PubMedCrossRefGoogle Scholar
  65. 65.
    Huo Y, Ley KF (2004) Role of platelets in the development of atherosclerosis. Trends Cardtovasc Med 14: 18–22CrossRefGoogle Scholar
  66. 66.
    Geberhiwot T, Ingerpuu S, Pedraza C, Neira M, Lehto U, Virtanen I, Kortesmaa J, Tryggvason K, Engvall E, Patarroyo M (1999) Blood platelets contain and secrete laminin-8 (α4β1γ1) and adhere to laminin-8 via α6β1 integrin. Exp Cell Res 253: 723–732PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Mathieu-Benoit Voisin
    • 1
  • Sussan Nourshargh
    • 1
  1. 1.Centre for Microvascular Research, Williams Harvey Research InstituteQueen Mary and Westfield CollegeLondonUK

Personalised recommendations