Advertisement

PECAM: Regulating the start of diapedesis

  • William A. Muller
Part of the Progress in Inflammation Research book series (PIR)

Abstract

The molecules involved in the capturing, rolling, adhesion, and locomotion steps of leukocyte emigration have been described in earlier chapters in this book. PECAM is primarily involved in diapedesis — the step in which leukocytes squeeze in ameboid fashion between the tightly apposed endothelial cells that line the blood vessels at a site of inflammation. It is also the “point of no return” for the leukocyte. In vivo as viewed by intravital microscopy, the preceding steps of capturing, rolling, locomotion, and adhesion are reversible. Most leukocytes that enter a postcapillary venule at the site of inflammation are not captured; many of the leukocytes that do adhere to the endothelium release back into the circulation. Once the leukocyte commits to diapedesis, however, it continues to migrate into the inflamed tissue and does not return to the circulation — at least not as the same cell.

Keywords

Transendothelial Migration Intratracheal Instillation Postcapillary Venule Platelet Endothelial Cell Adhesion Homophilic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coxon A, Tang T, Mayadas TN (1999) Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo. A role for granulocyte/macrophage colony-stimulating factor. J Exp Med 190: 923–934PubMedCrossRefGoogle Scholar
  2. 2.
    Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11: 753–761CrossRefGoogle Scholar
  3. 3.
    Newman PJ, Berndt MC, Gorski J, White GC II, Lyman S, Paddock C, Muller WA (1990) PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247: 1219–1222PubMedCrossRefGoogle Scholar
  4. 4.
    Newman PJ (1999) Switched at birth: A new family for PECAM-1. J Clin Invest 103: 5–9PubMedCrossRefGoogle Scholar
  5. 5.
    Muller WA, Ratti CM, McDonnell SL, Cohn ZA (1989) A human endothelial cellrestricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J Exp Med 170: 399–414PubMedCrossRefGoogle Scholar
  6. 6.
    Newman PJ, Newman DK (2003) Signal transduction pathways mediated by PECAM-1: New roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol 23: 953–964PubMedCrossRefGoogle Scholar
  7. 7.
    Ilan N, Madri JA (2003) PECAM-1: old friend, new partners. Curr Optn Cell Biol 15: 515–524CrossRefGoogle Scholar
  8. 8.
    Zocchi MR, Poggi A (2004) PECAM-1, apoptosis and CD34+ precursors. Leuk Lymphoma 45: 2205–2213PubMedCrossRefGoogle Scholar
  9. 9.
    Wong MX, Jacson DE (2004) Regulation of B cell activation by PECAM-1: implications for the development of autoimmune disease. Curr Pharm Des 10: 155–161PubMedCrossRefGoogle Scholar
  10. 10.
    Sun Q-H, Delisser HM, Zukowski MM, Paddock C, Albelda SM, Newman PJ (1996) Individually distinct Ig homology domains in PECAM-1 regulate homophilic binding and modulate receptor affinity. J Biol Chem 271: 11090–11098PubMedCrossRefGoogle Scholar
  11. 11.
    Muller WA, Berman ME, Newman PJ, De Lisser HM, Albelda SM (1992) A heterophilic adhesion mechanism for platelet/endothelial cell adhesion molecule 1 (CD31). J Exp Med 175: 1401–1404PubMedCrossRefGoogle Scholar
  12. 12.
    Piali L, Hammel P, Uherek C, Bachmann F, Gisler R, Dunon D, Imhof B (1995) CD31/ PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol 130: 451–460PubMedCrossRefGoogle Scholar
  13. 13.
    Wong CW, Wiedle G, Ballestrem C, Wehrle-Haller B, Etteldorf S, Bruckner M, Engelhardt B, Gisler RH, Imhof BA (2000) PECAM-1/CD31 trans-homophilic binding at the intercellular junctions is independent of its cytoplasmic domain; evidence for heterophilic interaction with integrin αvβ3 in cis. Mol Biol Cell 11: 3109–3121PubMedGoogle Scholar
  14. 14.
    Delisser HM, Yan HC, Newman PJ, Muller WA, Buck CA, Albelda SM (1993) Platelet/ endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface glycosaminoglycans. J Biol Chem 268: 16037–16046PubMedGoogle Scholar
  15. 15.
    Liao F, Huynh HK, Eiroa A, Greene T, Polizzi E, Muller WA (1995) Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J Exp Med 182: 1337–1343PubMedCrossRefGoogle Scholar
  16. 16.
    Sun Q-H, Paddock C, Visentin GP, Zukowski MM, Muller WA, Newman PJ (1998) Cell surface glycosaminoglycans do not serve as ligands for PECAM-1. PECAM-1 is not a heparin-binding protein. J Biol Chem 273: 11483–11490PubMedCrossRefGoogle Scholar
  17. 17.
    Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, Dianzani U, Stockinger H, Malavasi F (1998) Human CD38 (ADP-ribosyl cyclase) is a counterreceptor of CD31, an Ig superfamily member. J Immunol 160: 395–402PubMedGoogle Scholar
  18. 18.
    Falati S, Patil S, Gross PL, Stapleton M, Merrill-Skoloff G, Barrett NE, Pixton KL, Weiler H, Cooley B, Newman DK et al (2006) Platelet PECAM-1 inhibits thrombus formation in vivo. Blood 107: 535–541CrossRefGoogle Scholar
  19. 19.
    Wee JL, Jackson DE (2005) The Ig-ITIM superfamily member PECAM-1 regulates the “outside-in” signaling properties of integrin alpha(IIb)beta3 in platelets. Blood 106: 3816–3823PubMedCrossRefGoogle Scholar
  20. 20.
    Osawa M, Masuda M, Kusano K-I, Fujiwara K (2002) Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol 158: 773–785PubMedCrossRefGoogle Scholar
  21. 21.
    Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437: 426–431PubMedCrossRefGoogle Scholar
  22. 22.
    Muller WA, Weigl SA, Deng X, Phillips DM (1993) PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178: 449–460PubMedCrossRefGoogle Scholar
  23. 23.
    Schenkel AR, Mamdouh Z, Muller WA (2004) Locomotion of monocytes on endothelium is a critical step during extravasation. Nat Immunol 5: 393–400PubMedCrossRefGoogle Scholar
  24. 24.
    Liao F, Ali J, Greene T, Muller WA (1997) Soluble domain 1 of platelet-endothelial cell adhesion molecule (PECAM) is sufficient to block transendothelial migration in vitro and in vivo. J Exp Med 185: 1349–1357PubMedCrossRefGoogle Scholar
  25. 25.
    Muller WA, Greene T, Liao F (1997) Transendothelial migration and interstitial migration of monocytes are mediated by separate domains of monocyte CD31. In: T Kishimoto (ed): Leukocyte Typing VI. Proceedings of the VIth International Leukocyte Differentiation Antigen Workshop, Kobe, Japan, 1996. Garland Publishers, London, 370–372Google Scholar
  26. 26.
    Nakada MT, Amin K, Christofidou-Solomidou M, O’Brien CD, Sun J, Gurubhagavatula I, Heavner GA, Taylor AH, Paddock C, Sun QH et al (2000) Antibodies against the first Ig-like domain of human platelet endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment. J Immunol 164: 452–462Google Scholar
  27. 27.
    Newton JP, Buckley CD, Jones EY, Simmons DL (1997) Residues on both faces of the first immunoglobulin fold contribute to homophilic binding sites of PECAM-1/CD31. J Biol Chem 272: 20555–20563PubMedCrossRefGoogle Scholar
  28. 28.
    Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA (2002) CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 3: 143–150PubMedCrossRefGoogle Scholar
  29. 29.
    Allport JR, Muller WA, Luscinskas FW (2000) Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J Cell Biol 148: 203–216PubMedCrossRefGoogle Scholar
  30. 30.
    Berman ME, Xie Y, Muller WA (1996) Roles of platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) in natural killer cell transendothelial migration and beta 2 integrin activation. J Immunol 156: 1515–1524PubMedGoogle Scholar
  31. 31.
    Bird IN, Spragg JH, Ager AH, Matthews N (1993) Studies of lymphocyte transendothelial migration: analysis of migrated cell phenotypes with regard to CD31 (PECAM-1), CD45RA and CD45RO. Immunology 80: 553–560PubMedGoogle Scholar
  32. 32.
    Xie Y, Muller WA (1993) Molecular cloning and adhesive properties of murine platelet/ endothelial cell adhesion molecule-1. Proc Natl Acad Sci USA 90: 5569–5573PubMedCrossRefGoogle Scholar
  33. 33.
    Bogen S, Pak J, Garifallou M, Deng X, Muller WA (1994) Monoclonal antibody to murine PECAM-1 (CD31) blocks acute inflammation in vivo. J Exp Med 179: 1059–1064PubMedCrossRefGoogle Scholar
  34. 34.
    Liao F, Schenkel AR, Muller WA (1999) Transgenic mice expressing different levels of soluble platelet/endothelial cell adhesion molecule-IgG display distinct inflammatory phenotypes. J Immunol 163: 5640–5648PubMedGoogle Scholar
  35. 35.
    Muller WA, Randolph GJ (1999) Migration of leukocytes across endothelium and beyond: Molecules involved in the transmigration and fate of monocytes. J Leukoc Biol 66: 698–704PubMedGoogle Scholar
  36. 36.
    Ishikawa J, Okada Y, Bird IN, Jasani B, Spragg JH, Yamada T (2002) Use of anti-plate — let-endothelial cell adhesion molecule-1 antibody in the control of disease progression in established collagen-induced arthritis in DBA/1J mice. Jpn J Pharmacol 88: 332–340CrossRefGoogle Scholar
  37. 37.
    Vaporciyan AA, Delisser HM, Yan H-C, Mendiguren II, Thorn SR, Jones ML, Ward PA, Albelda SM (1993) Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 161: 1580–1582CrossRefGoogle Scholar
  38. 38.
    Gumina RJ, Schultz JE, Yao Z, Kenny D, Warltier DC, Newman PJ, Gross GJ (1996) Antibody to platelet/endothelial cell adhesion molecule-1 reduces myocardial infarct size in a rat model of ischemia-reperfusion injury. Circulation 94: 3327–3333PubMedGoogle Scholar
  39. 39.
    Murohara T, Delyam JA, Albelda SM, Lefer AM (1996) Blockade of platelet endothelial cell adhesion molecule-1 protects against myocardial ischemia and reperfusion injury in cats. J Immunol 156: 3550–3557PubMedGoogle Scholar
  40. 40.
    Qing Z, Sandor M, Radvany Z, Sewell D, Falus A, Potthoff D, Muller WA, Fabry Z (2001) Inhibition of antigen-specific T cell trafficking into the central nervous system via blocking PECAM1/CD31 molecule. J Neuropathol Exp Neurol 60: 798–807PubMedGoogle Scholar
  41. 41.
    Duncan GS, Andrew DP, Takimoto H, Kaufman SA, Yoshida H, Spellberg J, Luis de la Pompa J, Elia A, Wakeham A, Karan-Tamir B et al (1999) Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162: 3022–3030PubMedGoogle Scholar
  42. 42.
    Schenkel AR, Chew TW, Muller WA (2004) Platelet endothelial cell adhesion molecule deficiency or blockade significantly reduces leukocyte emigration in a majority of mouse strains. J Immunol 173: 6403–6408PubMedGoogle Scholar
  43. 43.
    Schenkel AR, Chew TW, Chlipala E, Harbord MW, Muller WA (2006) Different susceptibilities of PECAM-deficient mouse strains to spontaneous idiopathic pneumonitis. Exp Mol Pathol 81: 23–30PubMedCrossRefGoogle Scholar
  44. 44.
    Thompson RD, Noble KE, Larbi KY, Dewar A, Duncan GS, Mak TW, Nourshargh S (2001) Platelet-endothelial cell adhesion molecule-1 (PECAM-1 (-deficient mice demonstrate a transient and cytokine-specific role for PECAM-1 in leukocyte migration through the perivascular basement membrane. Blood 97: 1854–1860PubMedCrossRefGoogle Scholar
  45. 45.
    Thompson RD, Wakelin MW, Larbi KY, Dewar A, Asimakopoulous G, Horton MA, Nakada MT, Nourshargh S (2000) Divergent effects of platelet-endothelial cell adhesion molecule-1 and α3 integrin blockade on leukocyte transmigration in vivo. J Immunol 165:426–434PubMedGoogle Scholar
  46. 46.
    Albelda SM, Lau KC, Chien P, Huang Z, Arguiris E, Bohen A, Sun J, Billet JA, Christofidou-Solomidou M, Indik ZK et al (2004) Role for platelet-endothelial cell adhesion molecule-1 in macrophage Fcy receptor function. Am J Respir Cell Mol Biol 31: 246–255PubMedCrossRefGoogle Scholar
  47. 47.
    Wakelin MW, Sanz M-J, Dewar A, Albelda SM, Larkin SW, Boughton-Smith N, Williams TJ, Nourshargh S (1996) An anti-platelet/endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through basement membrane. J Exp Med 184: 229–239PubMedCrossRefGoogle Scholar
  48. 48.
    Lou O, Alcaide P, Luscinskas FW, Muller WA (2007) CD99 is a key mediator of the transendothelial migration of neutrophils. J Immunol 178: 1136–1143PubMedGoogle Scholar
  49. 49.
    Huang MT, Larbi KY, Scheiermann C, Woodfin A, Gerwin N, Haskard DO, Nourshargh S (2006) ICAM-2 mediates neutrophil transmigration in vivo: evidence for stimulus specificity and a role in PECAM-1-independent transmigration. Blood 107: 4721–4727PubMedCrossRefGoogle Scholar
  50. 50.
    Tada Y, Koarada S, Morito F, Ushiyama O, Haruta Y, Kanegae F, Ohta A, Ho A, Mak TW, Nagasawa K (2003) Acceleration of the onset of collagen-induced arthritis by a deficiency of platelet endothelial cell adhesion molecule 1. Arthritis Rheum 48: 3280–3290PubMedCrossRefGoogle Scholar
  51. 51.
    Graesser D, Solowiej A, Bruckner M, Osterweil E, Juedes A, Davis S, Ruddle NH, Engelhardt B, Madri JA (2002) Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J Clin Invest 109: 383–392PubMedCrossRefGoogle Scholar
  52. 52.
    Wong MX, Hayball JD, Hogarth PM, Jackson DE (2005) The inhibitory co-receptor, PECAM-1 provides a protective effect in suppression of collagen-induced arthritis. J Clin Immunol 25: 19–28PubMedCrossRefGoogle Scholar
  53. 53.
    Newman DK, Hamilton C, Newman PJ (2001) Inhibition of antigen-receptor signaling by platelet endothelial cell adhesion molecule-1 (CD31) requires functional ITIMs, SHP-2, and p56(lck). Blood 97: 2351–2357PubMedCrossRefGoogle Scholar
  54. 54.
    Mamdouh Z, Chen X, Pierini LM, Maxfield FR, Muller WA (2003) Targeted recycling of PECAM from endothelial cell surface-connected compartments during diapedesis. Nature All: 748–753Google Scholar
  55. 55.
    Cepinskas G, Savickiene J, Ionescu CV, Kvietys PR (2003) PMN transendothelial migration decreases nuclear NFkappaB in IL-lbeta-activated endothelial cells: role of PECAM-1. J Cell Biol 161: 641–651PubMedCrossRefGoogle Scholar
  56. 56.
    Tanaka Y, Albelda SM, Horgan KJ, Van Seventer GA, Shimizu Y, Newman W, Hallam J, Newman PJ, Buck CA, Shaw S (1992) CD31 expressed on distinctive T cell subsets is a preferential amplifier of beta 1 integrin-mediated adhesion. J Exp Med 176: 245–253PubMedCrossRefGoogle Scholar
  57. 57.
    Berman ME, Muller WA (1995) Ligation of platelet/endothelial cell adhesion molecule 1 (PECAM-1/CD31) on monocytes and neutrophils increases binding capacity of leukocyte CR3 (CDllb/CD18). J Immunol 154: 299–307PubMedGoogle Scholar
  58. 58.
    Chiba R, Nakagawa N, Kurasawa K, Tanaka Y, Saito Y, Iwamoto I (1999) Ligation of CD31 (PECAM-1) on endothelial cells increases adhesive function of αvα5 integrin and enhances β1 integrin-mediated adhesion of eosinophils to endothelial cells. Blood 94: 1319–1329PubMedGoogle Scholar
  59. 59.
    Reedquist KA, Ross E, Koop EA, Wolthuis RMF, Zwartkruis FJT, Kooyk Yv, Salmon M, Buckley CD, Bos JL (2000) The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J Cell Biol 148: 1151–1158PubMedCrossRefGoogle Scholar
  60. 60.
    Dangerfield J, Larbi KY, Huang MT, Dewar A, Nourshargh S (2002) PECAM-1 (CD31) homophilic interaction up-regulates alpha6beta 1 on transmigrated neutrophils in vivo and plays a functional role in the ability of α6β1 integrins to mediate leukocyte migration through the perivascular basement membrane. J Exp Med 196: 1201–1211PubMedCrossRefGoogle Scholar
  61. 61.
    Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C, Xerri L, Farnarier C, Cantoni C, Bottino C, Moretta A et al (2004) DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med 199: 1331–1341PubMedCrossRefGoogle Scholar
  62. 62.
    Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24: 326–333CrossRefGoogle Scholar
  63. 63.
    Miller M, Sung K-LP, Muller WA, Cho JY, Roman M, Castaneda D, Nayar J, Condon T, Kim J, Sriramarao P et al (2001) Eosinophil tissue recruitment to sites of allergic inflammation in the lung is platelet endothelial cell adhesion molecule independent. J Immunol 167:2292–2297PubMedGoogle Scholar
  64. 64.
    Scalia R, Lefer AM (1998) In vivo regulation of PECAM-1 activity during acute endothelial dysfunction in the rat mesenteric microvasculature. J Leukoc Biol 64: 163–169PubMedGoogle Scholar
  65. 65.
    Turegun M, Gudemez E, Newman P, Zins J, Siemionow M (1999) Blockade of platelet endothelial cell adhesion molecule-1 (PECAM-1) protects against ischemia-reperfusion injury in muscle flaps at microcirculatory level. Plast Reconstr Surg 104: 1033–1040PubMedCrossRefGoogle Scholar
  66. 66.
    Tasaka S, Qin L, Saijo A, Albelda SM, De Lisser HM, Doerschuk CM (2003) Platelet endothelial cell adhesion molecule-1 in neutrophil emigration during acute bacterial pneumonia in mice and rats. Am J Respir Crit Care Med 167: 164–170PubMedCrossRefGoogle Scholar
  67. 67.
    Chosay JG, Fisher MA, Farhood A, Ready KA, Dunn CJ, Jaeschke H (1998) Role of PECAM-1 (CD31) in neutrophil transmigration in murine models of liver and peritoneal inflammation. Am J Physiol 274: G776–782PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • William A. Muller
    • 1
  1. 1.Department of Pathology and Laboratory Medicine and the Graduate Program in Immunology and Microbial PathogenesisWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations