Lymphocyte function-associated antigen-1 (LFA-1) and macrophage antigen-1 (Mac-1): Cooperative partners in leukocyte emigration and function

  • Alan R. Schenkel
  • Minsoo Kim
Part of the Progress in Inflammation Research book series (PIR)


Lymphocyte function-associated antigen-1 (LFA-1; [1]) and macrophage antigen-1 (Mac-1; [2]) are some of the best-characterized integrins. Like other integrins, their diverse relationships and functions have lead to complex nomenclature. Integrins are heterodimeric receptors, consisting of type-I transmembrane glycoprotein α and β subunits. The a subunits of LFA-1 and Mac-1 were first named as αL and αM, respectively, in 1983 [3, 4, 5] . The Third International Workshop on Human Leukocyte Differentiation Antigens assigned αL subunit as CD11a and αM subunit as CD11b, and the common β2 subunit as CD18 [6] The common β2 subunit of LFA-1 (αLβ2) and Mac-1 (αMβ2), forms a family with αxβ2 (p150,95, CD11c/CD18), and αDβ2 (CD11d/CD18). All four are expressed predominately on leukocytes [1, 7]. Another name of Mac-1 is complement receptor type-3 (CR3; [8]). Mac-1 had been called Mo-1 and OKM-1 early on until the antibodies were shown to recognize the same proteins [3, 6, 7, 9].


Transendothelial Migration Immunological Synapse Leukocyte Adhesion Deficiency Supramolecular Activation Cluster Talin Head Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davignon D, Martz E, Reynolds T, Kürzinger K, Springer TA (1981) Lymphocyte function-associated antigen 1 (LFA-1): A surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Troc Natl Acad Sci USA 78: 4535–4539Google Scholar
  2. 2.
    Springer TA, Galfre G, Secher DS, Milstein C (1979) Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol 9: 301–306PubMedGoogle Scholar
  3. 3.
    Sanchez-Madrid F, Simon P, Thompson S, Springer TA (1983) Mapping of antigenic and functional epitopes on the a and β subunits of two related glycoproteins involved in cell interactions, LFA-1 and Mac-1. J Exp Med 158: 586–602PubMedGoogle Scholar
  4. 4.
    Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multi-step paradigm. Cell 76: 301–314PubMedGoogle Scholar
  5. 5.
    Hynes RO (1992) Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25PubMedGoogle Scholar
  6. 6.
    McMichael AJ (1987) Leukocyte typing III: White cell differentiation antigens. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Hynes RO (1987) Integrins: A family of cell surface receptors. Cell 48: 549–554PubMedGoogle Scholar
  8. 8.
    Ehlers MR (2000) CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect 2: 289–294PubMedGoogle Scholar
  9. 9.
    Todd RF III, van Agthoven A, Schlossman SF, Terhorst C (1982) Structural analysis of differentiation antigens Mo1 and Mo2 on human monocytes. Hybridoma 1: 329–337PubMedGoogle Scholar
  10. 10.
    Hatta K, Takeichi M (1986) Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320: 447–449PubMedGoogle Scholar
  11. 11.
    Nagafuchi A, Shirayoshi Y, Okazaki K, Yasuda K, Takeichi M (1987) Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329: 341–343PubMedGoogle Scholar
  12. 12.
    Pytela R, Pierschbacher MD, Ruoslahti E (1985) Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40: 191–198PubMedGoogle Scholar
  13. 13.
    Pytela R, Pierschbacher MD, Ruoslahti E (1985) A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci USA 82: 5766–5770PubMedGoogle Scholar
  14. 14.
    Brackenbury R, Rutishauser U, Edelman GM (1981) Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells. Proc Natl Acad Sci USA 78: 387–391PubMedGoogle Scholar
  15. 15.
    Hoffman S, Sorkin BC, White PC, Brackenbury R, Mailhammer R, Rutishauser U, Cunningham BA, Edelman GM (1982) Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J Biol Chem 257: 7720–7729PubMedGoogle Scholar
  16. 16.
    Crowley CA, Curnutte JT, Rosin RE, Andre-Schwartz J, Gallin JI, Klempner M, Snyderman R, Southwick FS, Stossel TP, Babior BM (1980) An inherited abnormality of neutrophil adhesion. Its genetic transmission and its association with a missing protein. N Engl J Med 302: 1163–1168PubMedGoogle Scholar
  17. 17.
    Harlan JM, Killen PD, Senecal FM, Schwartz BR, Yee EK, Taylor RF, Beatty PG, Price TH, Ochs HD (1985) The role of neutrophil membrane glycoprotein GP-150 in neutrophil adherence to endothelium in vitro. Blood 66: 167–178PubMedGoogle Scholar
  18. 18.
    Anderson DC, Kishimoto TK, Smith CW (1995) Leukocyte adhesion deficiency and other disorders of leukocyte adherence and motility. In: CR Scriver, AL Beaudet, WS Sly, D Valle (eds): The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, 3955–3994Google Scholar
  19. 19.
    Tamkun JW, DeSimone DW, Fonda D, Patel RS, Buck C, Horwitz AF, Hynes RO (1986) Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46: 271–282PubMedGoogle Scholar
  20. 20.
    Sanchez-Madrid F, Krensky AM, Ware CF, Robbins E, Strominger JL, Burakoff SJ, Springer TA (1982) Three distinct antigens associated with human T lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3. Proc Natl Acad Sci USA 79: 7489–7493PubMedGoogle Scholar
  21. 21.
    Ross GD, Lambris JD (1982) Identification of a C3bi-specific membrane complement receptor that is expressed on lymphocytes, monocytes, neutrophils, and erythrocytes. J Exp Med 155: 96–110PubMedGoogle Scholar
  22. 22.
    Breard J, Reinherz EL, Kung PC, Goldstein G, Schlossman SF (1980) Amonoclonal antibody reactive with human peripheral blood monocytes. J Immunol 124: 1943–1948PubMedGoogle Scholar
  23. 23.
    Todd RF III, Nadler LM, Schlossman SF (1981) Antigens on human monocytes identified by monoclonal antibodies. J Immunol 126: 1435–1442PubMedGoogle Scholar
  24. 24.
    Marlin SD, Springer TA (1987) Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51: 813–819PubMedGoogle Scholar
  25. 25.
    Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguila J, Hibbs ML, Springer TA (1990) ICAM-1 (CD54): a counter-receptor for Mac-1 (CDllb/CD18). J Cell Biol 111: 3129–3139PubMedGoogle Scholar
  26. 26.
    de Fougerolles AR, Stacker SA, Schwarting R, Springer TA (1991) Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J Exp Med 174: 253–267PubMedGoogle Scholar
  27. 27.
    de Fougerolles AR, Qin X, Springer TA (1994) Characterization of the function of intercellular adhesion molecule (ICAM)-3 and comparison with ICAM-1 and ICAM-2 in immune responses. J Exp Med 179: 619–629PubMedGoogle Scholar
  28. 28.
    Ihanus E, Uotila L, Toivanen A, Stefanidakis M, Bailly P, Cartron JP, Gahmberg CG (2003) Characterization of ICAM-4 binding to the I domains of the CDlla/CD18 and CDllb/CD18 leukocyte integrins. Eur J Biochem 270: 1710–1723PubMedGoogle Scholar
  29. 29.
    Tian L, Kilgannon P, Yoshihara Y, Mori K, Gallatin WM, Carpen O, Gahmberg CG (2000) Binding of T lymphocytes to hippocampal neurons through ICAM-5 (telencephalin) and characterization of its interaction with the leukocyte integrin CD11a/ CD18. Eur J Immunol 30: 810–818PubMedGoogle Scholar
  30. 30.
    de Fougerolles AR, Diamond MS, Springer TA (1995) Heterogenous glycosylation of ICAM-3 and lack of interaction with Mac-1 and p150,95. Eur J Immunol 25: 1008–1012PubMedGoogle Scholar
  31. 31.
    Neelamegham S, Taylor AD, Shankaran H, Smith CW, Simon SI (2000) Shear and time-dependent changes in Mac-1, LFA-1, and ICAM-3 binding regulate neutrophil homotypic adhesion. J Immunol 164: 3798–3805PubMedGoogle Scholar
  32. 32.
    Mandell KJ, Parkos CA (2005) The JAM family of proteins. Adv Drug Deliv Rev 57: 857–867PubMedGoogle Scholar
  33. 33.
    Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24: 327–334PubMedGoogle Scholar
  34. 34.
    Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3: 151–158PubMedGoogle Scholar
  35. 35.
    Santoso S, Sachs UJ, Kroll H, Linder M, Ruf A, Preissner KT, Chavakis T (2002) The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 196: 679–691PubMedGoogle Scholar
  36. 36.
    Trezzini C, Jungi TW, Kuhnert P, Peterhans E (1988) Fibrinogen association with human monocytes: evidence for constitutive expression of fibrinogen receptors and for involvement of Mac-1 (CD18, CR3) in the binding. Biochem Biophys Res Commun 156: 477–484PubMedGoogle Scholar
  37. 37.
    Davis GE (1992) The Mac-1 and p150,95 beta 2 integrins bind denatured proteins to mediate leukocyte cell-substrate adhesion. Exp Cell Res 200: 242–252PubMedGoogle Scholar
  38. 38.
    Todd RF 3rd, Petty HR (1997) Beta 2 (CD11/CD18) integrins can serve as signaling partners for other leukocyte receptors. J Lab Clin Med 129: 492–498PubMedGoogle Scholar
  39. 39.
    van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB, van Kooyk Y (2005) Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med 201: 1281–1292PubMedGoogle Scholar
  40. 40.
    Geijtenbeek TB, Krooshoop DJ, Bleijs DA, van Vliet SJ, van Duijnhoven GC, Grabovsky V, Alon R, Figdor CG, van Kooyk Y (2000) DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 1: 353–357PubMedGoogle Scholar
  41. 41.
    Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG (2000) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100: 575–585PubMedGoogle Scholar
  42. 42.
    Bleijs DA, Geijtenbeek TB, Figdor CG, van Kooyk Y (2001) DC-SIGN and LFA-1: a battle for ligand. Trends Immunol 22: 457–463PubMedGoogle Scholar
  43. 43.
    Shimaoka M, Lu C, Palframan R, von Andrian UH, Takagi J, Springer TA (2001) Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin αL I domains with high affinity and antagonist activity in vivo. Proc Natl Acad Sci USA 98: 6009–6014PubMedGoogle Scholar
  44. 44.
    Huth JR, Olejniczak ET, Mendoza R, Liang H, Harris EA, Lupher ML Jr, Wilson AE, Fesik SW, Staunton DE (2000) NMR and mutagenesis evidence for an I domain allosteric site that regulates lymphocyte function-associated antigen 1 ligand binding. Proc Natl Acad Sci USA 97: 5231–5236PubMedGoogle Scholar
  45. 45.
    Shimaoka M, Xiao T, Liu J-H, Yang Y, Dong Y, Jun C-D, McCormack A, Zhang R, Joachimiak A, Takagi J et al (2003) Structures of the aL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112: 99–111PubMedGoogle Scholar
  46. 46.
    Shimaoka M, Kim M, Cohen EH, Yang W, Astrof N, Peer D, Salas A, Ferrand A, Springer TA (2006) AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity up-regulation in lymphocytes. Proc Natl Acad Sci USA 103: 13991–13996PubMedGoogle Scholar
  47. 47.
    Diamond MS, Garcia-Aguilar J, Bickford JK, Corbi AL, Springer TA (1993) The I domain is a major recognition site on the leukocyte integrin Mac-1 (CDllb/CD18) for four distinct adhesion ligands. J Cell Biol 120: 1031–1043PubMedGoogle Scholar
  48. 48.
    Yang W, Shimaoka M, Salas A, Takagi J, Springer TA (2004) Inter-subumt signal transmission in integrins by a receptor-like interaction with a pull spring. Proc Natl Acad Sei USA 101:2906–2911Google Scholar
  49. 49.
    Xiao T, Takagi J, Coller BS, Wang JH, Springer TA (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432: 59–67PubMedGoogle Scholar
  50. 50.
    Nishida N, Xie C, Shimaoka M, Cheng Y, Walz T, Springer TA (2006) Activation of leukocyte beta(2) integrins by conversion from bent to extended conformations. Immunity 25: 583–594PubMedGoogle Scholar
  51. 51.
    Kim M, Carman CV, Springer TA (2003) Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301: 1720–1725PubMedGoogle Scholar
  52. 52.
    Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ, Ginsberg MH (1996) Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 271: 6571–6574PubMedGoogle Scholar
  53. 53.
    Lu CF, Springer TA (1997) The alpha subunit cytoplasmic domain regulates the assembly and adhesiveness of integrin lymphocyte function-associated antigen-1. J Immunol 159: 268–278PubMedGoogle Scholar
  54. 54.
    Hogg N, Harvey J, Cabanas C, Landis RC (1993) Control of leukocyte integrin activation. Am Rev Respir Dis 148: S 55–59Google Scholar
  55. 55.
    Hogg N, Laschinger M, Giles K, McDowall A (2003) T-cell integrins: more than just sticking points. J Cell Sci 116: 4695–4705PubMedGoogle Scholar
  56. 56.
    Franco SJ, Rodgers MA, Perrin BJ, Han J, Benmn DA, Critchley DR, Huttenlocher A (2004) Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 6: 977–983PubMedGoogle Scholar
  57. 57.
    Kinashi T, Katagiri K (2004) Regulation of lymphocyte adhesion and migration by the small GTPase Rapl and its effector molecule, RAPL. Immunol Lett 93: 1–5PubMedGoogle Scholar
  58. 58.
    Tohyama Y, Katagiri K, Pardi R, Lu C, Springer TA, Kinashi T (2003) The critical cytoplasmic regions of the aL/ß2 integrin in Rapl-induced adhesion and migration. Mol Biol Cell 14: 2570–2582PubMedGoogle Scholar
  59. 59.
    Cherry LK, Li X, Schwab P, Lim B, Klickstein LB (2004) RhoH is required to maintain the integrin LFA-1 in a nonadhesive state on lymphocytes. Nat Immunol 5: 961–967PubMedGoogle Scholar
  60. 60.
    Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2: 133–142PubMedGoogle Scholar
  61. 61.
    Kim M, Carman CV, Yang W, Salas A, Springer TA (2004) The primacy of affinity over clustering in regulation of adhesiveness of the integrin αLβ2. J Cell Biol 167: 1241–1253PubMedGoogle Scholar
  62. 62.
    Zhang H, Schaff UY, Green CE, Chen H, Sarantos MR, Hu Y, Wara D, Simon SI, Lowell CA (2006) Impaired integrin-dependent function in Wiskott-Aldrich syndrome proteindeficient murine and human neutrophils. Immunity 25: 285–295PubMedGoogle Scholar
  63. 63.
    Li R, Mitra N, Gratkowski H, Vilaire G, Litvinov SV, Nagasami C, Weisel JW, Lear JD, DeGrado WF, Bennett JS (2003) Activation of integrin allbß3 by modulation of transmembrane helix associations. Science 300: 795–798PubMedGoogle Scholar
  64. 64.
    Luo BH, Carman CV, Takagi J, Springer TA (2005) Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proc Natl Acad Sci USA 102: 3679–3684PubMedGoogle Scholar
  65. 65.
    Knorr R, Dustin ML (1997) The lymphocyte function-associated antigen 1 I domain is a transient binding module for intercellular adhesion molecule (ICAM)-l and ICAM-3 in hydrodynamic flow. J Exp Med 186: 719–730PubMedGoogle Scholar
  66. 66.
    Dunne JL, Ballantyne CM, Beaudet AL, Ley K (2002) Control of leukocyte rolling velocity in TNF-alpha-induced inflammation by LFA-1 and Mac-1. Blood 99: 336–341PubMedGoogle Scholar
  67. 67.
    Dunne JL, Collins RG, Beaudet AL, Ballantyne CM, Ley K (2003) Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. J Immunol 171: 6105–6111PubMedGoogle Scholar
  68. 68.
    Henderson RB, Lim LHK, Tessier PA, Gavins FNE, Mathies M, Perretti M, Hogg N (2001) The use of lymphocyte function-associated antigen (LFA)-l-deficient mice to determine the role of LFA-1, Mac-1, and α4 integrin in the inflammatory response of neutrophils. J Exp Med 194: 219–226PubMedGoogle Scholar
  69. 69.
    Chesnutt BC, Smith DF, Raffler NA, Smith ML, White EJ, Ley K (2006) Induction of LFA-1-dependent neutrophil rolling on ICAM-1 by engagement of E-selectin. Microcirculation 13: 99–109PubMedGoogle Scholar
  70. 70.
    Salas A, Shimaoka M, Phan U, Kim M, Springer TA (2006) Transition from rolling to firm adhesion can be mimicked by extension of integrin alphaLbeta2 in an intermediate affinity state. J Biol Chem 281: 10876–10882PubMedGoogle Scholar
  71. 71.
    Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell 65: 859–873PubMedGoogle Scholar
  72. 72.
    Luscinskas FW, Kansas GS, Ding H, Pizcueta P, Schleiffenbaum BE, Tedder TF, Gimbrone MA (1994) Monocyte rolling, arrest and spreading on IL-4-activated vascular endothelium under flow is mediated via sequential action of L-selectin, β1-integrins and β2-integnns. J Cell Biol 125: 1417–1427PubMedGoogle Scholar
  73. 73.
    Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC (1995) Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80: 413–422PubMedGoogle Scholar
  74. 74.
    Warnock RA, Askan S, Butcher EC, von Andrian UH (1998) Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J Exp Med 187: 205–216PubMedGoogle Scholar
  75. 75.
    von Andrian UH, Chambers JD, McEvoy LM, Bargatze RF, Arfors K-E, Butcher EC (1991) Two-step model of leukocyte-endothelial cell interaction in inflammation: Distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci USA 88: 7538–7542Google Scholar
  76. 76.
    Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA (1996) Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integnn CDllb/CD18. Blood 88: 146–157PubMedGoogle Scholar
  77. 77.
    Ding ZM, Babensee JE, Simon SI, Lu H, Perrard JL, Bullard DC, Dai XY, Bromley SK, Dustin ML, Entman ML et al (1999) Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J Immunol 163: 5029–5038PubMedGoogle Scholar
  78. 78.
    Gopalan PK, Burns AR, Simon SI, Sparks S, Mclntyre LV, Smith CW (2000) Preferential sites for stationary adhesion of neutrophils to cytokine-stimulated HUVEC under flow conditions. J Leukoc Biol 68: 47–57PubMedGoogle Scholar
  79. 79.
    Shimizu Y, Newman W, Venkat Gopal T, Horgan KJ, Graber N, Beall LD, Van Seventer GA, Shaw S (1991) Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1 and ELAM-1 and changes in pathway heirarchy under different activation conditions. J Cell Biol 113: 1203–1212PubMedGoogle Scholar
  80. 80.
    Laschinger M, Engelhardt B (2000) Interaction of alpha4-integnn with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro. J Neuroimmunol 102: 32–43PubMedGoogle Scholar
  81. 81.
    Dustin ML, Springer TA (1988) Lymphocyte function associated antigen-1 (LFA-1) interaction with intercellular molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol 107: 321PubMedGoogle Scholar
  82. 82.
    Diamond MS, Springer TA (1993) A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen. J Cell Biol 120: 545–556PubMedGoogle Scholar
  83. 83.
    Issekutz AC, Rowter D, Springer TA (1999) Role of ICAM-1 and ICAM-2 and alternate CD11/CD18 ligands in neutrophil transendothelial migration. J Leukoc Biol 65: 117–126PubMedGoogle Scholar
  84. 84.
    Johnson-Leger CA, Aurrand-Lions M, Beltraminelli N, Fasel N, Imhof BA (2002) Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood 100: 2479–2486PubMedGoogle Scholar
  85. 85.
    Aurrand-Lions M, Lamagna C, Dangerfield JP, Wang S, Herrera P, Nourshargh S, Imhof BA (2005) Junctional adhesion molecule-C regulates the early influx of leukocytes into tissues during inflammation. J Immunol 174: 6406–6415PubMedGoogle Scholar
  86. 86.
    Chavakis T, Keiper T, Matz-Westphal R, Hersemeyer K, Sachs UJ, Nawroth PP, 1Preissner KT, Santoso S (2004) The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo. J Biol Chem 279: 55602–55608PubMedGoogle Scholar
  87. 87.
    Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA (1986) Induction by IL-1 and interferon-gamma: tissue distribution, biochemistry and function of a natural adherence molecule (ICAM-1). J Immunol 137: 245–254PubMedGoogle Scholar
  88. 88.
    Rothlein R, Dustin ML, Marlin SD, Springer TA (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 137: 1270–1274PubMedGoogle Scholar
  89. 89.
    Staunton DE, Dustin ML, Springer TA (1989) Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339: 61–64PubMedGoogle Scholar
  90. 90.
    Huang MT, Larbi KY, Scheiermann C, Woodfin A, Gerwin N, Haskard DO, Nourshargh S (2006) ICAM-2 mediates neutrophil transmigration in vivo: evidence for stimulus specificity and a role in PECAM-1-independent transmigration. Blood 107: 4721–4727PubMedGoogle Scholar
  91. 91.
    McLaughlin F, Hayes BP, Horgan CM, Beesley JE, Campbell CJ, Randi AM (1998) Tumor necrosis factor (TNF)-alpha and interleukin (IL)-lbeta down-regulate intercellular adhesion molecule (ICAM)-2 expression on the endothelium. Cell Adhes Commun 6: 381–400PubMedGoogle Scholar
  92. 92.
    Schenkel AR, Mamdouh Z, Muller WA (2004) Locomotion of monocytes on endothelium is a critical step during extravasation. Nat Immunol 5: 393–400PubMedGoogle Scholar
  93. 93.
    Cernuda-Morollon E, Ridley AJ (2006) Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ Res 98: 757–767PubMedGoogle Scholar
  94. 94.
    Dustin ML, Carpen O, Springer TA (1992) Regulation of locomotion and cell-cell contact area by the LFA-1 and ICAM-1 adhesion receptors. J Immunol 148: 2654–2663PubMedGoogle Scholar
  95. 95.
    Carpen O, Pallai P, Staunton DE, Springer TA (1992) Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. J Cell Biol 118: 1223–1234PubMedGoogle Scholar
  96. 96.
    Wojciechowski JC, Sarelius IH (2005) Preferential binding of leukocytes to the endothelial junction region in venules in situ. Microcirculation 12: 349–359PubMedGoogle Scholar
  97. 97.
    Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P (2006) Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med 203: 2569–2575PubMedGoogle Scholar
  98. 98.
    Heit B, Colarusso P, Kubes P (2005) Fundamentally different roles for LFA-1, Mac-1 and alpha4-integrin in neutrophil chemotaxis. J Cell Sci 118: 5205–5220PubMedGoogle Scholar
  99. 99.
    Engelhardt B, Wolburg H (2004) Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol 34: 2955–2963PubMedGoogle Scholar
  100. 100.
    Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sanchez-Madrid F (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157: 1233–1245PubMedGoogle Scholar
  101. 101.
    Carman CV, Springer TA (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167: 377–388PubMedGoogle Scholar
  102. 102.
    Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172: 3994–3998PubMedGoogle Scholar
  103. 103.
    Stadnyk AW, Dollard C, Issekutz TB, Issekutz AC (2002) Neutrophil migration into indomethacin induced rat small intestinal injury is CDlla/CD18 and CDllb/CD18 codependent. Gut 50:629–635PubMedGoogle Scholar
  104. 104.
    Kidney JC, Proud D (2000) Neutrophil transmigration across human airway epithelial monolayers: mechanisms and dependence on electrical resistance. Am J Respir Cell Mol Biol 23: 389–395PubMedGoogle Scholar
  105. 105.
    Devine L, Lightman SL, Greenwood J (1996) Role of LFA-1, ICAM-1, VLA-4 and VCAM-1 in lymphocyte migration across retinal pigment epithelial monolayers in vitro. Immunology 88: 456–462PubMedGoogle Scholar
  106. 106.
    Zen K, Babbin BA, Liu Y, Whelan JB, Nusrat A, Parkos CA (2004) JAM-C is a component of desmosomes and a ligand for CDllb/CD18-mediated neutrophil transepithelial migration. Mol Biol Cell 15: 3926–3937PubMedGoogle Scholar
  107. 107.
    Walzog B, Schuppan D, Heimpel C, Hafezi-Moghadam A, Gaehtgens P, Ley K (1995) The leukocyte integrin Mac-1 (CDllb/CD18) contributes to binding of human granulocytes to collagen. Exp Cell Res 218: 28–38PubMedGoogle Scholar
  108. 108.
    van den Berg JM, Mul FP, Schippers E, Weening JJ, Roos D, Kuijpers TW (2001) Betal integrin activation on human neutrophils promotes beta2 integrin-mediated adhesion to fibronectin. Eur J Immunol 31: 276–284PubMedGoogle Scholar
  109. 109.
    Shang XZ, Issekutz AC (1998) Contribution of CDlla/CD18, CDllb/CD18, ICAM-1 (CD54) and-2 (CD102) to human monocyte migration through endothelium and connective tissue fibroblast barriers. Eur J Immunol 28: 1970–1979PubMedGoogle Scholar
  110. 110.
    Issekutz AC (1998) Adhesion molecules mediating neutrophil migration to arthritis in vivo and across endothelium and connective tissue barriers in vitro. Inflamm Res 47: 123–132Google Scholar
  111. 111.
    Friedl P, Brocker EB (2000) T cell migration in three-dimensional extracellular matrix: guidance by polarity and sensations. Dev Immunol 7: 249–266PubMedGoogle Scholar
  112. 112.
    Davignon D, Martz E, Reynolds T, Kurzinger K, Springer TA (1981) Lymphocyte function-associated antigen 1 (LFA-1): a surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Troc Natl Acad Sci USA 78: 4535–4539Google Scholar
  113. 113.
    Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395: 82–86PubMedGoogle Scholar
  114. 114.
    Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285: 221–227PubMedGoogle Scholar
  115. 115.
    Shibuya K, Shirakawa J, Kameyama T, Honda S, Tahara-Hanaoka S, Miyamoto A, Onodera M, Sumida T, Nakauchi H, Miyoshi H et al (2003) CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med 198: 1829–1839PubMedGoogle Scholar
  116. 116.
    Griffiths EK, Krawczyk C, Kong YY, Raab M, Hyduk SJ, Bouchard D, Chan VS, Kozieradzki I, Oliveira-Dos-Santos AJ, Wakeham A et al (2001) Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 293: 2260–2263PubMedGoogle Scholar
  117. 117.
    Peterson EJ, Woods ML, Dmowski SA, Denmanov G, Jordan MS, Wu JN, Myung PS, Liu QH, Pribila JT, Freedman BD et al (2001) Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 293: 2263–2265PubMedGoogle Scholar
  118. 118.
    Shibuya K, Lamer LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, Nakauchi H, Shibuya A (1999) Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 11: 615–623PubMedGoogle Scholar
  119. 119.
    Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A, Honda S, Lanier LL, Shibuya A (2004) Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 161: 533–538PubMedGoogle Scholar
  120. 120.
    Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C, Xerri L, Farnarier C, Cantoni C, Bottino C, Moretta A et al (2004) DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med 199: 1331–1341PubMedGoogle Scholar
  121. 121.
    Laudanna C, Alon R (2006) Right on the spot. Chemokine triggering of integrin-mediated arrest of rolling leukocytes. Thromb Haemost 95: 5–11PubMedGoogle Scholar
  122. 122.
    Hirahashi J, Mekala D, Van Ziffle J, Xiao L, Saffaripour S, Wagner DD, Shapiro SD, Lowell C, Mayadas TN (2006) Mac-1 signaling via Src-family and Syk kinases results in elastase-dependent thrombohemorrhagic vasculopathy. Immunity 25: 271–283PubMedGoogle Scholar
  123. 123.
    Mayadas TN, Cullere X (2005) Neutrophil beta2 integrins: moderators of life or death decisions. Trends Immunol 26: 388–395PubMedGoogle Scholar
  124. 124.
    Mocsai A, Zhou M, Meng F, Tybulewicz VL, Lowell CA (2002) Syk is required for integrin signaling in neutrophils. Immunity 16: 547–558PubMedGoogle Scholar
  125. 125.
    Luo BH, Springer TA (2006) Integrin structures and conformational signaling. Curr Opin Cell Biol 18: 579–586PubMedGoogle Scholar
  126. 126.
    Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ et al (2006) Reconstructing and deconstructing agonist-induced activation of integrin alphallbbeta3. Curr Biol 16: 1796–1806PubMedGoogle Scholar
  127. 127.
    Van Seventer GA, Shimizu Y, Horgan KJ, Shaw S (1990) The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol 144: 4579–4586PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Alan R. Schenkel
    • 1
  • Minsoo Kim
    • 2
  1. 1.Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsUSA
  2. 2.Department of Surgery, Division of Surgical ResearchRhode Island Hospital and Brown University School of MedicineProvidenceUSA

Personalised recommendations