α4-integrins: structure, function and secrets

  • Britta Engelhardt
Part of the Progress in Inflammation Research book series (PIR)


The initial description of α4β1integrin dates back 30 years, when in 1987, based on biochemical studies, Martin Hemler and co-workers [1] described it as a distinct Mr 150 000/130 000 α4β heterodimer and thus a new member of the VLA-protein family on human T lymphoblastoid cells and peripheral blood T cells. Interestingly, some of the most widely used and characterized antibodies against α4-integrin were originally described by Sanchez-Madrid in 1986 against VLA-3 in error [2]. The name VLA (very late activation) antigen was originally coined to describe a novel set of antigens that appeared in a very late stage of activated T cell differentiation [3]. VLA antigens were found to be composed of non-covalently associated heterodimers with a common β-subunit but unique α-subunits, and were readily recognized as members of the larger integrin family of adhesion receptors. These receptors are involved in a multitude of distinct cell-matrix and cell-cell adhesion functions. Based on their discovery, β1-integrins are often referred to as VLA antigens, therefore α4β1-integrin is still mostly referred to as VLA-4 until today. The corresponding term of the CD nomenclature for α4β1-integrin is CD49dCD29.


Experimental Autoimmune Encephalomyelitis Progressive Multifocal Leukoencephalopathy Progressive Multifocal Leukoencephalopathy Integrin Alpha Propeller Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hemler ME, Huang C, Schwarz L (1987) The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subumt. J Biol Chem 262: 3300–3309PubMedGoogle Scholar
  2. 2.
    Sanchez-Madrid F, De Landazuri MO, Morago G, Cebrian M, Acevedo A, Bernabeu C (1986) VLA-3: a novel polypeptide association within the VLA molecular complex: cell distribution and biochemical characterization. Eur J Immunol 16: 1343–1349PubMedCrossRefGoogle Scholar
  3. 3.
    Hemler ME, Jacobson JG, Brenner MB, Mann D, Strominger JL (1985) VLA-1: a T cell surface antigen which defines a novel late stage of human T cell activation. Eur J Immunol 15: 502–508PubMedCrossRefGoogle Scholar
  4. 4.
    Takada Y, Elices MJ, Crouse C, Hemler ME (1989) The primary structure of the alpha 4 subunit of VLA-4: homology to other integrins and a possible cell-cell adhesion function. EMBO J 8: 1361–1368PubMedGoogle Scholar
  5. 5.
    Clayberger C, Krensky AM, McIntyre BW, Koller TD, Parham P, Brodsky F, Linn DJ, Evans EL (1987) Identification and characterization of two novel lymphocyte function-associated antigens, L24 and L25. J Immunol 138: 1510–1514PubMedGoogle Scholar
  6. 6.
    Wayner EA, Garcia-Pardo A, Humphries MJ, McDonald JA, Carter WG (1989) Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J Cell Biol 109: 1321–1330PubMedCrossRefGoogle Scholar
  7. 7.
    Guan JL, Hynes RO (1990) Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor alpha 4 beta 1. Cell 60: 53–61PubMedCrossRefGoogle Scholar
  8. 8.
    Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME, Lobb RR (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60: 577–584PubMedCrossRefGoogle Scholar
  9. 9.
    Holzmann B, Mclntyre BW, Weissman IL (1989) Identification of a murine Peyer’s patch-specific lymphocyte homing receptor as an integrin molecule with an alpha chain homologous to human VLA-4 alpha. Cell 56: 37–46PubMedCrossRefGoogle Scholar
  10. 10.
    Holzmann B, Weissman IL (1989) Peyer’s patch-specific lymphocyte homing receptors consist of a VLA-4-like alpha chain associated with either of two integrin beta chains, one of which is novel. EMBO J 8: 1735–1741PubMedGoogle Scholar
  11. 11.
    Erle DJ, Ruegg C, Sheppard D, Pytela R (1991) Complete amino acid sequence of an integrin beta subunit (beta 7) identified in leukocytes. J Biol Chem 266: 11009–11016PubMedGoogle Scholar
  12. 12.
    Kilshaw PJ, Murant SJ (1991) Expression and regulation of beta 7(beta p) integrins on mouse lymphocytes: relevance to the mucosal immune system. Eur J Immunol 21: 2591–2597PubMedCrossRefGoogle Scholar
  13. 13.
    Erle DJ, Briskin MJ, Butcher EC, Garcia-Pardo A, Lazarovits AI, Tidswell M (1994) Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J Immunol 153: 517–528PubMedGoogle Scholar
  14. 14.
    Rott LS, Briskin MJ, Andrew DP, Berg EL, Butcher EC (1996) A fundamental subdivision of circulating lymphocytes defined by adhesion to mucosal addressin cell adhesion molecule-1. Comparison with vascular cell adhesion molecule-1 and correlation with beta 7 integrins and memory differentiation. J Immunol 156: 3727–3736PubMedGoogle Scholar
  15. 15.
    Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21: 527–538PubMedCrossRefGoogle Scholar
  16. 16.
    Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, Otipoby KL, Yokota A, Takeuchi H, Ricciardi-Castagnoli P et al (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314: 1157–1160PubMedCrossRefGoogle Scholar
  17. 17.
    Johnston B, Kubes P (1999) The alpha4-integrin: an alternative pathway for neutrophil recruitment? Immunol Today 20: 545–550PubMedCrossRefGoogle Scholar
  18. 18.
    Williams DA, Rios M, Stephens C, Patel VP (1991) Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature 352: 438–441.PubMedCrossRefGoogle Scholar
  19. 19.
    Sheppard AM, Onken MD, Rosen GD, Noakes PG, Dean DC (1994) Expanding roles for alpha 4 integrin and its ligands in development. Cell Adhes Commun 2: 27–43PubMedGoogle Scholar
  20. 20.
    Stepp MA, Urry LA, Hynes RO (1994) Expression of alpha 4 integrin mRNA and protein and fibronectin in the early chicken embryo. Cell Adhes Commun 2: 359–375PubMedGoogle Scholar
  21. 21.
    Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121: 549–560PubMedGoogle Scholar
  22. 22.
    Qian F, Vaux DL, Weissman IL (1994) Expression of the integrin alpha 4 beta 1 on melanoma cells can inhibit the invasive stage of metastasis formation. Cell 77: 335–347PubMedCrossRefGoogle Scholar
  23. 23.
    Argraves WS, Suzuki S, Aral H, Thompson K, Pierschbacher MD, Ruoslahti E (1987) Amino acid sequence of the human fibronectin receptor. J Cell Biol 105: 1183–1190PubMedCrossRefGoogle Scholar
  24. 24.
    Teixido J, Parker CM, Kassner PD, Hemler ME (1992) Functional and structural analysis of VLA-4 integrin alpha 4 subunit cleavage. J Biol Chem 267: 1786–1791PubMedGoogle Scholar
  25. 25.
    Parker CM, Pujades C, Brenner MB, Hemler ME (1993) Alpha 4/180, a novel form of the integrin alpha 4 subunit. J Biol Chem 268: 7028–7035PubMedGoogle Scholar
  26. 26.
    Springer TA (1997) Folding of the N-terminal, ligand-binding region of integrin alphasubunits into a beta-propeller domain. Proc Natl Acad Sci USA 94: 65–72PubMedCrossRefGoogle Scholar
  27. 27.
    Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001) Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294: 339–345PubMedCrossRefGoogle Scholar
  28. 28.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687PubMedCrossRefGoogle Scholar
  29. 29.
    Du X, Gu M, Weisel JW, Nagaswami C, Bennett JS, Bowditch R, Ginsberg MH (1993) Long range propagation of conformational changes in integrin alpha IIb beta 3 [Erratum in: J Biol Chem (1994) 269: 11673]. J Biol Chem 268: 23087–23092PubMedGoogle Scholar
  30. 30.
    Wiesner S, Lange A, Fassler R (2006) Local call: from integrins to actin assembly. Trends Cell Biol 16: 327–329PubMedCrossRefGoogle Scholar
  31. 31.
    Legate KR, Montanez E, Kudlacek O, Fassler R (2006) ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7: 20–31PubMedCrossRefGoogle Scholar
  32. 32.
    Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25: 619–647PubMedCrossRefGoogle Scholar
  33. 33.
    Osborn L, Vassallo C, Benjamin CD (1992) Activated endothelium binds lymphocytes through a novel binding site in the alternately spliced domain of vascular cell adhesion molecule-1. J Exp Med 176: 99–107PubMedCrossRefGoogle Scholar
  34. 34.
    Kilger G, Needham LA, Nielsen PJ, Clements J, Vestweber D, Holzmann B (1995) Differential regulation of alpha-4 integrin-dependent binding to domains 1 and 4 of vascular cell adhesion molecule-1. J Biol Chem 270: 5979–5984PubMedCrossRefGoogle Scholar
  35. 35.
    Ruegg C, Postigo AA, Sikorski EE, Butcher EC, Pytela R, Erle DJ (1992) Role of integrin alpha 4 beta 7/alpha 4 beta P in lymphocyte adherence to fibronectin and VCAM-1 and in homotypic cell clustering. J Cell Btol 117: 179–189CrossRefGoogle Scholar
  36. 36.
    Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC (1993) Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74: 185–185PubMedCrossRefGoogle Scholar
  37. 37.
    Briskin MJ, Rott L, Butcher EC (1996) Structural requirements for mucosal vascular addressin binding to its lymphocyte receptor alpha 4 beta 7. Common themes among integrin-Ig family interactions. J Immunol 156: 719–726PubMedGoogle Scholar
  38. 38.
    Pytela R, Pierschbacher MD, Ruoslahti E (1985) Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40: 191–198PubMedCrossRefGoogle Scholar
  39. 39.
    Altevogt P, Hubbe M, Ruppert M, Lohr J, Hoegen P, Sammar M, Andrew DP, McEvoy LM, Humphries MJ, Butcher EC (1995) The α4-integrin chain is a ligand for α4ß7 and α4ßl. J Exp Med 182: 345–355PubMedCrossRefGoogle Scholar
  40. 40.
    Bayless KJ, Meininger GA, Scholtz JM, Davis GE (1998) Osteopontin is a ligand for the alpha4betal integrin. J Cell Sci 111: 1165–1174PubMedGoogle Scholar
  41. 41.
    Bayless KJ, Davis GE (2001) Identification of dual alpha 4betal integrin binding sites within a 38 amino acid domain in the N-terminal thrombin fragment of human osteopontin. J Biol Chem 276: 13483–13489PubMedCrossRefGoogle Scholar
  42. 42.
    Ennis E, Isberg RR, Shimizu Y (1993) Very late antigen 4-dependent adhesion and costimulation of resting human T cells by the bacterial beta 1 integrin ligand invasin. J Exp Med 177: 207–212PubMedCrossRefGoogle Scholar
  43. 43.
    Yabkowitz R, Dixit VM, Guo N, Roberts DD, Shimizu Y (1993) Activated T-cell adhesion to thrombospondin is mediated by the alpha 4 beta 1 (VLA-4) and alpha 5 beta 1 (VLA-5) integrins. J Immunol 151: 149–158PubMedGoogle Scholar
  44. 44.
    Cunningham SA, Rodriguez JM, Arrate MP, Tran TM, Brock TA (2002) JAM2 interacts with alpha4betal. Facilitation by JAM3. J Biol Chem 277: 27589–27592PubMedCrossRefGoogle Scholar
  45. 45.
    Bridges LC, Sheppard D, Bowditch RD (2005) ADAM disintegrin-like domain recognition by the lymphocyte integrins alpha4betal and alpha4beta7. Biochem J 387: 101–108PubMedCrossRefGoogle Scholar
  46. 46.
    Humphries JD, Humphries MJ (2007) CD14 is a ligand for the integrin alpha4betal. FEBS Lett 581: 757–763PubMedCrossRefGoogle Scholar
  47. 47.
    Porter JC, Hogg N (1997) Integrin cross talk: activation of lymphocyte function-associated antigen-1 on human T cells alters alpha4beta1-and alpha5beta1-mediated function. J Cell Biol 138: 1437–1447PubMedCrossRefGoogle Scholar
  48. 48.
    Bazzoni G, shih D-T, Buck CA, Hemler ME (1995) Monoclonal antibody 9EG7 defines a novel ß1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J Biol Chem 270: 25570–25577PubMedCrossRefGoogle Scholar
  49. 49.
    Newham P, Craig SE, Clark K, Mould AP, Humphries MJ (1998) Analysis of ligandinduced and ligand-attenuated epitopes on the leukocyte integrin alpha4betal: VCAM-1, mucosal addressin cell adhesion molecule-1, and fibronectin induce distinct conformational changes. J Immunol 160: 4508–4517PubMedGoogle Scholar
  50. 50.
    Pulido R, Elices MJ, Campanero MR, Osborn L, Schiffer S, Garcia-Pardo A, Lobb R, Hemler ME, Sanchez-Madrid F (1991) Functional evidence for three distinct and independently inhibitable adhesion activities mediated by the human integrin VLA-4. Correlation with distinct alpha 4 epitopes. J Biol Chem 266: 10241–10245PubMedGoogle Scholar
  51. 51.
    Kamata T, Puzon W, Takada Y (1995) Identification of putative ligand-binding sites of the integrin a4ß1 (VLA-4, CD49d/CD29). Biochem J 305: 945–951PubMedGoogle Scholar
  52. 52.
    Schiffer SG, Hemler ME, Lobb RR, Tizard R, Osborn L (1995) Molecular mapping of functional antibody binding sites of alpha 4 integrin. J Biol Chem 270: 14270–14273PubMedGoogle Scholar
  53. 53.
    Andrew DP, Berlin C, Honda S, Yoshino T, Hamann A, Holzmann B, Kilshaw PJ, Butcher EC (1994) Distinct but overlapping epitopes are involved in alpha 4 beta 7-mediated adhesion to vascular cell adhesion molecule-1, mucosal addressin-1, fibronectin, and lymphocyte aggregation. J Immunol 153: 3847–3861PubMedGoogle Scholar
  54. 54.
    Munoz M, Serrador J, Sanchez-Madrid F, Teixido J (1996) A region of the integrin VLA alpha 4 subunit involved in homotypic cell aggregation and in fibronectin but not vascular cell adhesion molecule-1 binding. J Biol Chem 271: 2696–2702PubMedCrossRefGoogle Scholar
  55. 55.
    Irie A, Kamata T, Puzon-McLaughlin W, Takada Y (1995) Critical amino acid residues for ligand binding are clustered in a predicted beta-turn of the third N-terminal repeat in the integrin alpha 4 and alpha 5 subunits. EMBO J 14: 5550–5556PubMedGoogle Scholar
  56. 56.
    Takada Y, Ylanne J, Mandelman D, Puzon W, Ginsberg MH (1992) A point mutation of integrin beta 1 subunit blocks binding of alpha 5 beta 1 to fibronectin and invasin but not recruitment to adhesion plaques. J Cell Biol 119: 913–921PubMedCrossRefGoogle Scholar
  57. 57.
    Higgins JM, Cernadas M, Tan K, Irie A, Wang J, Takada Y, Brenner MB (2000) The role of alpha and beta chains in ligand recognition by beta 7 integrins. J Biol Chem 275: 25652–25664PubMedCrossRefGoogle Scholar
  58. 58.
    Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA (2002) Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296: 151–155PubMedCrossRefGoogle Scholar
  59. 59.
    Yednock TA, Cannon C, Vandevert C, Goldbach EG, Shaw G, Ellis DK, Liaw C, Fritz LC, Tanner LI (1995) Alpha 4 beta 1 integrin-dependent cell adhesion is regulated by a low affinity receptor pool that is conformationally responsive to ligand. J Biol Chem 270: 28740–28750PubMedCrossRefGoogle Scholar
  60. 60.
    Yauch RL, Felsenfeld DP, Kraeft SK, Chen LB, Sheetz MP, Hemler ME (1997) Mutational evidence for control of cell adhesion through integrin diffusion/clustering, independent of ligand binding. J Exp Med 186: 1347–1355PubMedCrossRefGoogle Scholar
  61. 61.
    Kwee L, Baldwin HS, Shen HM, Stewart CL, Buc C, Buch CA, Labow MA (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121: 489–503PubMedGoogle Scholar
  62. 62.
    Gurtner GC, Davis V, Li H, McCoy MJ, Sharpe A, Cybulsky MI (1995) Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 9: 1–14PubMedCrossRefGoogle Scholar
  63. 63.
    Rosen GD, Sanes JR, LaChance R, Cunningham JM, Roman J, Dean DC (1992) Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 69: 1107–1119PubMedCrossRefGoogle Scholar
  64. 64.
    Yang JT, Rando TA, Mohler WA, Rayburn H, Blau HM, Hynes RO (1996) Genetic analysis of alpha 4 integrin functions in the development of mouse skeletal muscle. J Cell Biol 135: 829–835PubMedCrossRefGoogle Scholar
  65. 65.
    Miyake K, Weissman IL, Greenberger JS, Kincade PW (1991) Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J Exp Med 173: 599–607PubMedCrossRefGoogle Scholar
  66. 66.
    Wagner N, Lohler J, Kunkel EJ, Ley K, Leung E, Krissansen G, Rajewsky K, Muller W (1996) Critical role for beta7 integrins in formation of the gut-associated lymphoid tissue. Nature 382: 366–370PubMedCrossRefGoogle Scholar
  67. 67.
    Finke D, Acha-Orbea H, Mattis A, Lipp M, Kraehenbuhl J (2002) CD4+CD3- cells induce Peyer’s patch development: role of alpha4betal integrin activation by CXCR5. Immunity 17: 363–373PubMedCrossRefGoogle Scholar
  68. 68.
    Fassler R, Meyer M (1995) Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 9: 1896–1908PubMedCrossRefGoogle Scholar
  69. 69.
    Arroyo AG, Yang JT, Rayburn H, Hynes RO (1999) Alpha4 integrins regulate the proliferation/differentiation balance of multilineage hematopoietic progenitors in vivo. Immunity 11: 555–566CrossRefGoogle Scholar
  70. 70.
    Arroyo AG, Yang JT, Rayburn H, Hynes RO (1996) Differential requirements for alpha4 integrins during fetal and adult hematopoiesis. Cell 85: 997–1008PubMedCrossRefGoogle Scholar
  71. 71.
    Hirsch E, Iglesias A, Potocnik AJ, Hartmann U, Fassler R (1996) Impaired migration but not differentiation of haematopoietic stem cells in the absence of beta1 integrins. Nature 380: 171–175PubMedCrossRefGoogle Scholar
  72. 72.
    Potocnik AJ, Brakebusch C, Fassler R (2000) Fetal and adult hematopoietic stem cells require betal integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12: 653–663PubMedCrossRefGoogle Scholar
  73. 73.
    Brakebusch C, Fillatreau S, Potocnik AJ, Bungartz G, Wilhelm P, Svensson M, Kearney P, Körner H, Gray D, Fassler R (2002) Betal integrin is not essential for hematopoiesis but is necessary for the T cell-dependent IgM antibody response. Immunity 16: 465–477PubMedCrossRefGoogle Scholar
  74. 74.
    Scott LM, Priestley GV, Papayannopoulou T (2003) Deletion of alpha4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol Cell Biol 23: 9349–9360PubMedCrossRefGoogle Scholar
  75. 75.
    Bungartz G, Stiller S, Bauer M, Muller W, Schippers A, Wagner N, Fassler R, Brakebusch C (2006) Adult murine hematopoiesis can proceed without betal and beta7 integrins. Blood 108: 1857–1864PubMedCrossRefGoogle Scholar
  76. 76.
    Godfrey HP, Canfield LS, Kindler HL, Angadi CV, Tomasek JJ, Goodman JW (1988) Production of a fibronectin-associated lymphokine by cloned mouse T cells. J Immunol 141: 1508–1515PubMedGoogle Scholar
  77. 77.
    Nojima Y, Humphries MJ, Mould AP, Komoriya A, Yamada KM, Schlossman SF, Morimoto C (1990) VLA-4 mediated CD3-dependent CD4+ T cell activation via the CS1 alternatively spliced domain of fibronectin. J Exp Med 172: 1185–1192PubMedCrossRefGoogle Scholar
  78. 78.
    Nojima Y, Rothstein DM, Sugita K, Schlossman SF, Morimoto C (1992) Ligation of VLA-4 on T cells stimulates tyrosine phosphorylation of a 105-kD protein. J Exp Med 175: 1045–1053PubMedCrossRefGoogle Scholar
  79. 79.
    Sato T, Tachibana K, Nojima Y, D’Avirro N, Monmoto C (1995) Role of VLA-4 molecule in T cell costimulation. J Immunol 155: 2938–2947PubMedGoogle Scholar
  80. 80.
    Burkly LC, Jakubowski A, Newman BM, Rosa MD, Chi-Rosso G, Lobb RR (1991) Signaling by vascular cell adhesion molecule-1 (VCAM-1) through VLA-4 promotes CD3-dependent T cell proliferation. Eur J Immunol 21: 2871–2875PubMedCrossRefGoogle Scholar
  81. 81.
    Damle NK, Aruffo A (1991) Vascular cell adhesion molecule 1 induces T cell antigen receptor dependent activation of CD4+ T lymphocytes. Proc Natl Acad Sci USA 88: 6403–6407PubMedCrossRefGoogle Scholar
  82. 82.
    Engelhardt B, Laschinger M, Schulz M, Samulowitz U, Vestweber D, Hoch G (1998) The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J Clin Invest 102: 2096–2105PubMedGoogle Scholar
  83. 83.
    Hyduk SJ, Cybulsky MI (2002) Alpha 4 integrin signaling activates phosphatidylinositol 3-kinase and stimulates T cell adhesion to intercellular adhesion molecule-1 to a similar extent as CD3, but induces a distinct rearrangement of the actin cytoskeleton. J Immunol 168: 696–704PubMedGoogle Scholar
  84. 84.
    Mittelbrunn M, Molina A, Escribese MM, Yanez-Mo M, Escudero E, Ursa A, Tejedor R, Mampaso F, Sanchez-Madrid F (2004) VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses. Proc Natl Acad Sci USA 101: 11058–11063PubMedCrossRefGoogle Scholar
  85. 85.
    Leussink VI, Zettl UK, Jander S, Pepinsky RB, Lobb RR, Stoll G, Toyka KV, Gold R (2002) Blockade of signaling via the very late antigen (VLA-4) and its counterligand vascular cell adhesion molecule-1 (VCAM-1) causes increased T cell apoptosis in experimental autoimmune neuritis. Acta Neuropathol (Berl) 103: 131–136CrossRefGoogle Scholar
  86. 86.
    Koopman G, Keehnen RM, Lindhout E, Newman W, Shimizu Y, van Seventer GA, de Groot C, Pals ST (1994) Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol 152: 3760–3767PubMedGoogle Scholar
  87. 87.
    Butcher EC (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67: 1033–1036PubMedCrossRefGoogle Scholar
  88. 88.
    Springer TA (1993) Signals on endothelium for lymphocyte recirculation and leukocyte emigration: the area code paradigm. Harvey Lect 89: 53–103PubMedGoogle Scholar
  89. 89.
    Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC (1995) Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80: 413–422PubMedCrossRefGoogle Scholar
  90. 90.
    Alon R, Kassner PD, Carr MW, Finger EB, Hemler ME, Springer TA (1995) The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J Cell Biol 128: 1243–1253PubMedCrossRefGoogle Scholar
  91. 91.
    Bargatze RF, Jutila MA, Butcher EC (1995) Distinct roles of L-selectin and integrins α4ß7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity 3: 99–108PubMedCrossRefGoogle Scholar
  92. 92.
    Issekutz TB (1991) Inhibition of in vivo lymphocyte migration to inflammation and homing to lymphoid tissues by the TA-2 monoclonal antibody. A likely role for VLA-4 in vivo. J Immunol 147: 4178–4184Google Scholar
  93. 93.
    Issekutz TB, Issekutz AC (1991) T lymphocyte migration to arthritic joints and dermal inflammation in the rat: differing migration patterns and the involvement of VLA-4. Clin Immunol Immunopathol 61: 436–447PubMedCrossRefGoogle Scholar
  94. 94.
    Lobb RR, Hemler ME (1994) The pathophysiological role of α4 integrins in vivo. J Clin Invest 94: 1722–1728CrossRefGoogle Scholar
  95. 95.
    Chisholm PL, Williams CA, Lobb RR (1993) Monoclonal antibodies to the integrin alpha-4 subunit inhibit the murine contact hypersensitivity response. Eur J Immunol 23: 682–688PubMedCrossRefGoogle Scholar
  96. 96.
    Ferguson TA, Kupper TS (1993) Antigen-independent processes in antigen-specific immunity. A role for alpha 4 integrin. J Immunol 150: 1172–1182PubMedGoogle Scholar
  97. 97.
    Yang XD, Karin N, Tisch R, Steinman L, McDevitt HO (1993) Inhibition of insulitis and prevention of diabetes in nonobese diabetic mice by blocking L-selectin and very late antigen 4 adhesion receptors. Proc Natl Acad Sci USA 90: 10494–10498PubMedCrossRefGoogle Scholar
  98. 98.
    Podolsky DK, Lobb R, King N, Benjamin CD, Pepinsky B, Sehgal P, deBeaumont M (1993) Attenuation of colitis in the cotton-top tamarin by anti-alpha 4 integrin monoclonal antibody. J Clin Invest 92: 372–380PubMedGoogle Scholar
  99. 99.
    Yednock TA, Cannon C, Fritz LC, Sanchez Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356: 63–66PubMedCrossRefGoogle Scholar
  100. 100.
    Steffen BJ, Butcher EC, Engelhardt B (1994) Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am J Pathol 145: 189–201PubMedGoogle Scholar
  101. 101.
    Kent SJ, Karlik SJ, Cannon C, Hines DK, Yednock TA, Fritz LC, Horner HC (1995) A monoclonal antibody to alpha 4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J Neuroimmunol 58: 1–10PubMedCrossRefGoogle Scholar
  102. 102.
    Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA Jr. (1993) Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 177: 57–68PubMedCrossRefGoogle Scholar
  103. 103.
    Kerfoot S, Kubes P (2002) Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol 169: 1000–1006PubMedGoogle Scholar
  104. 104.
    Vajkoczy P, Laschinger M, Engelhardt B (2001) Alpha4-integrin-VCAM-l binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108: 557–565PubMedCrossRefGoogle Scholar
  105. 105.
    Kanwar JR, Harrison JE, Wang D, Leung E, Mueller W, Wagner N, Krissansen GW (2000) Beta7 integrins contribute to demyelinating disease of the central nervous system. J Neuroimmunol 103: 146–152PubMedCrossRefGoogle Scholar
  106. 106.
    Hamann A, Andrew DP, Jablonski-Westrich D, Holzmann B, Butcher EC (1994) Role of alpha 4-integrins in lymphocyte homing to mucosal tissues in vivo. J Immunol 152: 3282–3293Google Scholar
  107. 107.
    Gazitt Y, Akay C (2004) Mobilization of myeloma cells involves SDF-1/CXCR4 signaling and downregulation of VLA-4. Stem Cells 22: 65–73PubMedCrossRefGoogle Scholar
  108. 108.
    Leger OJ, Yednock TA, Tanner L, Homer HC, Hines DK, Keen S, Saldanha J, Jones ST, Fritz LC, Bendig MM (1997) Humanization of a mouse antibody against human alpha-4 integrin: a potential therapeutic for the treatment of multiple sclerosis. Hum Antibodies 8: 3–16PubMedGoogle Scholar
  109. 109.
    Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354: 899–910PubMedCrossRefGoogle Scholar
  110. 110.
    Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW, Lublin FD, Weinstock-Guttman B, Wynn DR, Lynn F et al (2006) Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 354: 911–923PubMedCrossRefGoogle Scholar
  111. 111.
    Hesterberg PE, Winsor-Hines D, Brskin MJ, Soler-Ferran D, Merrill C, Mackay CR, Newman W, Ringler DJ (1996) Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7. Gastroenterology 111: 1373–1380PubMedCrossRefGoogle Scholar
  112. 112.
    Picarella D, Hurlbut P, Rottman J, Shi X, Butcher E, Ringler DJ (1997) Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells. J Immunol 158: 2099–2106PubMedGoogle Scholar
  113. 113.
    Macdonald JK, McDonald JW (2006) Natalizumab for induction of remission in Crohn’s disease. Cochrane Database Syst Rev 3: CD006097PubMedGoogle Scholar
  114. 114.
    Langer-Gould A, Atlas SW, Bollen AW, Pelletier D (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 353: 375–381PubMedCrossRefGoogle Scholar
  115. 115.
    Kleinschmidt-Demasters BK, Tyler KL (2005) Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-la for multiple sclerosis. N Engl J Med 353: 369–374PubMedCrossRefGoogle Scholar
  116. 116.
    Berger JR, Koralnik IJ (2005) Progressive multifocal leukoencephalopathy and natalizumab — Unforeseen consequences. N Engl J Med 353: 414–416PubMedCrossRefGoogle Scholar
  117. 117.
    Drazen JM (2005) Patients at risk. N Engl J Med 353: 417PubMedCrossRefGoogle Scholar
  118. 118.
    Yousry TA, Major EO, Ryschkewitsch C, Fahle G, Fischer S, Hou J, Curfman B, Miszkiel K, Mueller-Lenke N, Sanchez E et al (2006) Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 354: 924–933PubMedCrossRefGoogle Scholar
  119. 119.
    Stuve O, Marra CM, Bar-Or A, Niino M, Cravens PD, Cepok S, Frohman EM, Phillips JT, Arendt G (2006) Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol 63: 1383–1387PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Britta Engelhardt
    • 1
  1. 1.Theodor Kocher InstituteUniversity of BernBernSwitzerland

Personalised recommendations