Advertisement

Endothelial ICAM-1 functions in adhesion and signaling during leukocyte recruitment

  • Scott D. Auerbach
  • Lin Yang
  • Francis W. Luscinskas
Part of the Progress in Inflammation Research book series (PIR)

Abstract

Intercellular adhesion molecule-1 (ICAM-1, CD54) was identified more than 20 years ago as a cytokine-inducible adhesion molecule [1]. Endothelial cell ICAM-1 surface expression is elevated at sites of endothelial cell activation in vivo and in vitro, and contributes to stable adhesion and transmigration of circulating blood leukocytes through its interaction with leukocyte β2 integrins. This chapter briefly reviews ICAM-1 structure and function, and then address the mechanisms through which ICAM-1-dependent adhesion and signaling control leukocyte transmigration.

Keywords

Brain Endothelial Cell Fluorescence Recovery After Photobleaching Leukocyte Recruitment Cytoskeletal Remodel Leukocyte Transmigration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rothlein R, Dustin ML, Marlin SD, Springer TA (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 137: 1270–1274PubMedGoogle Scholar
  2. 2.
    Roebuck KA, Finnegan A (1999) Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol 66: 876–888PubMedGoogle Scholar
  3. 3.
    Makgoba MW, Sanders ME, Luce GEG, Dustin ML, Springer TA, Clark EA, Mannoni P, Shaw S (1988) ICAM-1 a ligand for LFA-1 dependent adhesion to B, T and myeloid cells. Nature 331: 86–88PubMedCrossRefGoogle Scholar
  4. 4.
    Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314PubMedCrossRefGoogle Scholar
  5. 5.
    Miller J, Knorr R, Ferrone M, Houdei R, Carron CP, Dustin ML (1995) Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J Exp Med 172: 1231–1241CrossRefGoogle Scholar
  6. 6.
    Reilly PL, Waska JR, Jeanfavre DD, McNally E, Rothlein R, Bormann BJ (1995) The native structure of intercellular adhesion molecule-1 (ICAM-1) is a dimer. J Immunol 155:529–532PubMedGoogle Scholar
  7. 7.
    Yang Y, Jun CD, Liu JH, Zhang R, Joachimiak A, Springer TA, Wang JH (2004) Structural basis for dimerization of ICAM-1 on the cell surface. Mol Cell 14: 269–276PubMedCrossRefGoogle Scholar
  8. 8.
    Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227PubMedCrossRefGoogle Scholar
  9. 9.
    Etienne S, Adamson P, Greenwood J, Strosberg AD, Cazaubon S, Couraud PO (1998) ICAM-1 signaling pathways associated with Rho activation in microvascular brainendothelial cells. J Immunol 161: 5755–5761PubMedGoogle Scholar
  10. 10.
    Adamson P, Etienne S, Couraud PO, Calder V, Greenwood J (1999) Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J Immunol 162: 2964–2973PubMedGoogle Scholar
  11. 11.
    Etienne-Manneville S, Manneville JB, Adamson P, Wilbourn B, Greenwood J, Couraud PO (2000) ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 165: 3375–3383PubMedGoogle Scholar
  12. 12.
    Wang Q, Doerschuk CM (2001) The p38 mitogen-activated protein kinase mediates cytoskeletal remodeling in pulmonary microvascular endothelial cells upon intracellular adhesion molecule-1 ligation. J Immunol 166: 6877–6884PubMedGoogle Scholar
  13. 13.
    Durieu-Trautmann O, Chaverot N, Cazaubon S, Strosberg AD, Couraud PO (1994) Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J Biol Chem 269: 12536–12540PubMedGoogle Scholar
  14. 14.
    Weed SA, Parsons JT (2001) Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20: 6418–6434PubMedCrossRefGoogle Scholar
  15. 15.
    Sans E, Delachanal E, Duperray A (2001) Analysis of the roles of ICAM-1 in neutrophil transmigration using a reconstituted mammalian cell expression model: implication of ICAM-1 cytoplasmic domain and Rho-dependent signaling pathway. J Immunol 166: 544–551PubMedGoogle Scholar
  16. 16.
    Greenwood J, Amos CL, Walters CE, Couraud PO, Lyck R, Engelhardt B, Adamson P (2003) Intracellular domain of brain endothelial intercellular adhesion molecule-1 is essential for T lymphocyte-mediated signaling and migration. J Immunol 171: 2099–2108PubMedGoogle Scholar
  17. 17.
    Yang L, Kowalski JR, Yacono P, Bajmoczi M, Shaw SK, Froio RM, Golan DE, Thomas SM, Luscinskas FW (2006) Endothelial cell cortactin coordinates intercellular adhesion molecule-1 clustering and actin cytoskeleton remodeling during polymorphonuclear leukocyte adhesion and transmigration. J Immunol 177: 6440–6449PubMedGoogle Scholar
  18. 18.
    Cernuda-Morollon E, Ridley AJ (2006) Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ Res 98: 757–767PubMedCrossRefGoogle Scholar
  19. 19.
    Imhof BA, Aurrand-Lions M (2004) Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 4: 432–444PubMedCrossRefGoogle Scholar
  20. 20.
    Dixson JD, Forstner MJ, Garcia DM (2003) The alpha-actinin gene family: a revised classification. J Mol Evol 56: 1–10PubMedCrossRefGoogle Scholar
  21. 21.
    Liu J, Taylor DW, Taylor KA (2004) A 3-D reconstruction of smooth muscle alphaactinin by CryoEm reveals two different conformations at the actin-binding region. J Mol Biol 338: 115–125PubMedCrossRefGoogle Scholar
  22. 22.
    Tsuruta D, Gonzales M, Hopkinson SB, Otey C, Khuon S, Goldman RD, Jones JC (2002) Microfilament-dependent movement of the beta3 integrin subunit within focal contacts of endothelial cells. FASEB J 16: 866–868PubMedGoogle Scholar
  23. 23.
    Araki N, Hatae T, Yamada T, Hirohashi S (2000) Actinin-4 is preferentially involved in circular ruffling and macropinocytosis in mouse macrophages: analysis by fluorescence ratio imaging. J Cell Sci 113: 3329–3340PubMedGoogle Scholar
  24. 24.
    Celli L, Ryckewaert JJ, Delachanal E, Duperray A (2006) Evidence of a functional role for interaction between ICAM-1 and nonmuscle α-actinins in leukocyte diapedesis. J Immunol 177: 4113–4121PubMedGoogle Scholar
  25. 25.
    Otey CA, Carpen O (2004) Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 58: 104–111PubMedCrossRefGoogle Scholar
  26. 26.
    Janmey PA, Lindberg U (2004) Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 5: 658–666PubMedCrossRefGoogle Scholar
  27. 27.
    Carpen O, Pallai P, Staunton DE, Springer TA (1992) Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. J Cell Biol 118: 1223–1234PubMedCrossRefGoogle Scholar
  28. 28.
    Corgan AM, Singleton C, Santoso CB, Greenwood JA (2004) Phosphoinositides differentially regulate alpha-actinin flexibility and function. Biochem J 378: 1067–1072PubMedCrossRefGoogle Scholar
  29. 29.
    Fukami K, Sawada N, Endo T, Takenawa T (1996) Identification of a phosphatidylinositol 4,5-bisphosphate-binding site in chicken skeletal muscle alpha-actinin. J Biol Chem 271: 2646–2650PubMedCrossRefGoogle Scholar
  30. 30.
    Fukami K, Furuhashi K, Inagaki M, Endo T, Hatano S, Takenawa T (1992) Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function. Nature 359: 150–152PubMedCrossRefGoogle Scholar
  31. 31.
    Insall RH, Werner OD (2001) PIP3, PIP2, and cell movement similar messages, different meanings? Dev Cell 1: 743–747PubMedCrossRefGoogle Scholar
  32. 32.
    Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sanchez-Madrid F (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157: 1233–1245PubMedCrossRefGoogle Scholar
  33. 33.
    Kanner SB, Reynolds AB, Parsons JT (1991) Tyrosine phosphorylation of a 120-kilodalton pp60src substrate upon epidermal growth factor and platelet-derived growth factor stimulation and in polyomavirus middle-T-antigen-transformed cells. Mol Cell Biol 11: 713–720PubMedGoogle Scholar
  34. 34.
    Weed SA, Karginov AV, Schafer DA, Weaver AM, Kinley AW, Cooper JA, Parsons JT (2000) Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol 151: 29–40PubMedCrossRefGoogle Scholar
  35. 35.
    Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7: 713–726PubMedCrossRefGoogle Scholar
  36. 36.
    Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC (1999) An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18: 4440–4449PubMedCrossRefGoogle Scholar
  37. 37.
    Ivanov AI, McCall IC, Parkos CA, Nusrat A (2004) Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol Biol Cell 15: 2639–2651PubMedCrossRefGoogle Scholar
  38. 38.
    Tilghman RW, Hoover RL (2002) The Src-cortactin pathway is required for clustering of E-selectin and ICAM-1 in endothelial cells. FASEB J 16: 1257–1259PubMedGoogle Scholar
  39. 39.
    Yang L, Kowalski JR, Zhan X, Thomas SM, Luscinskas FW (2006) Endothelial cell cortactin phosphorylation by Src contributes to polymorphonuclear leukocyte transmigration in vitro. Circ Res 98: 394–402CrossRefGoogle Scholar
  40. 40.
    Daly RJ (2004) Cortactin signalling and dynamic actin networks. Biochem J 382: 13–25PubMedCrossRefGoogle Scholar
  41. 41.
    Martinez-Quiles N, Ho HY, Kirschner MW, Ramesh N, Geha RS (2004) Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Mol Cell Biol 24: 5269–5280PubMedCrossRefGoogle Scholar
  42. 42.
    Fan L, Ciano-Oliveira C, Weed SA, Craig AW, Greer PA, Rotstem OD, Kapus A (2004) Actin depolymerization-induced tyrosine phosphorylation of cortactin: the role of Ferkinase. Biochem J 380: 581–591PubMedCrossRefGoogle Scholar
  43. 43.
    Huang J, Asawa T, Takato T, Sakai R (2003) Cooperative roles of Fyn and cortactin in cell migration of metastatic murine melanoma. J Biol Ghent 278: 48367–48376CrossRefGoogle Scholar
  44. 44.
    Tsukita S, Yonemura S (1999) Cortical actin organization: lessons from ERM (ezrin/ radixin/moesin) proteins. J Biol Ghent 274: 34507–34510CrossRefGoogle Scholar
  45. 45.
    Heiska L, Alfthan K, Gronholm M, Vilja P, Vaheri A, Carpen O (1998) Association of ezrin with intercellular adhesion molecule-1 and-2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 273: 21893–21900PubMedCrossRefGoogle Scholar
  46. 46.
    Barret C, Roy C, Montcourrier P, Mangeat P, Niggli V (2000) Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J Cell Biol 151: 1067–1080PubMedCrossRefGoogle Scholar
  47. 47.
    Bompard G, Martin M, Roy C, Vignon F, Freiss G (2003) Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. J Cell Sci 116: 2519–2530PubMedCrossRefGoogle Scholar
  48. 48.
    Romero IA, Amos CL, Greenwood J, Adamson P (2002) Ezrin and moesin co-localise with ICAM-1 in brain endothelial cells but are not directly associated. Brain Res Mol Brain Res 105: 47–59PubMedCrossRefGoogle Scholar
  49. 49.
    Shaw SK, Ma S, Kim M, Rao RM, Hartman CU, Froio R, Liu Y, Yang L, Jones T., Nusrat A et al (2004) Coordinated redistribution of leukocyte LFA-1 and endothelial cell ICAM-1 accompanies neutrophil transmigration. J Exp Med 200: 1571–1580PubMedCrossRefGoogle Scholar
  50. 50.
    Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW (2005) ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 106: 584–592PubMedCrossRefGoogle Scholar
  51. 51.
    Lorenzon P, Vecile E, Nardon E, Ferrero E, Harlan JM, Tedesco F, Dobrina A (1998) Endothelial cell E-and P-selectin and vascular cell adhesion molecule-1 function as signaling receptors. J Cell Biol 142: 1381–1391PubMedCrossRefGoogle Scholar
  52. 52.
    Sanders VM, Vitetta ES (1991) B cell-associated LFA-1 and T cell-associated ICAM-1 transiently cluster in the area of contact between interacting cells. Cell Immunol 132: 45–55PubMedCrossRefGoogle Scholar
  53. 53.
    Carman CV, Springer TA (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167: 377–388PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Scott D. Auerbach
    • 1
  • Lin Yang
    • 1
  • Francis W. Luscinskas
    • 1
  1. 1.Center for Excellence in Vascular Biology, Departments of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations