Advertisement

L-selectin-mediated leukocyte adhesion and migration

  • Douglas A. Steeber
  • Hariharan Subramanian
  • Jamison J. Grailer
  • Rochelle M. Conway
  • Traci J. Storey
Part of the Progress in Inflammation Research book series (PIR)

Abstract

L-selectin, which is expressed by the majority of leukocytes, plays a pivotal role in the generation of rapid and efficient immune responses by mediating the interaction of circulating leukocytes with the vascular endothelium. Specifically, L-selectin functions to mediate the attachment of leukocytes to the vascular wall at sites of inflammation and the attachment of lymphocytes to specialized post-capillary venules termed “high endothelial venules” (HEV) located within secondary lymphoid tissues. This initial adhesive event termed “capture” or “tethering” occurs through selective interaction of L-selectin with its appropriately displayed ligand(s). While this adhesive function has largely defined L-selectin, it is now clear that L-selectin functions in a highly complex manner during leukocyte recruitment. For example, L-selectin has been demonstrated to function cooperatively and synergistically with other adhesion molecules under in vivo inflammatory conditions to mediate optimal leukocyte recruitment [1, 2]. In addition, L-selectin function can be positively and negatively regulated following leukocyte activation, both of which significantly impact leukocyte recruitment. Specifically, L-selectin ligand binding activity is transiently increased following leukocyte activation [3] followed by its rapid endoproteolytic cleavage or “shedding” from the leukocyte surface [4]. Interestingly, the generation of this soluble form of L-selectin (sL-selectin) that retains functional activity may serve to dampen inflammatory responses by competing with cell-surface L-selectin for ligand binding [5, 6].

Keywords

Leukocyte Adhesion High Endothelial Venule Leukocyte Rolling Lymphocyte Migration Selectin Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steeber DA, Campbell MA, Basit A, Ley K, Tedder TF (1998) Optimal selectin-medi-ated rolling of leukocytes during inflammation in vivo requires intercellular adhesion molecule-1 expression. Proc Natl Acad Sci USA 95: 7562–7567PubMedGoogle Scholar
  2. 2.
    Steeber DA, Tang MLK, Green NE, Zhang X-Q, Sloane JE, Tedder TF (1999) Leukocyte entry into sites of inflammation requires overlapping interactions between the L-selectin and intercellular adhesion molecule-1 pathways. J Immunol 163: 2176–2186PubMedGoogle Scholar
  3. 3.
    Spertini O, Kansas GS, Munro JM, Griffin JD, Tedder TF (1991) Regulation of leukocyte migration by activation of the leukocyte adhesion molecule-1 (LAM-1) selectin. Nature 349: 691–694PubMedGoogle Scholar
  4. 4.
    Chen A, Engel P, Tedder TF (1995) Structural requirements regulate endoproteolytic release of the L-selectin (CD62L) adhesion receptor from the cell surface of leukocytes. J Exp Med 182: 519–530PubMedGoogle Scholar
  5. 5.
    Schleiffenbaum BE, Spertini O, Tedder TF (1992) Soluble L-selectin is present in human plasma at high levels and retains functional activity. J Cell Biol 119: 229–238PubMedGoogle Scholar
  6. 6.
    Tu L, Poe JC, Kadono T, Venturi GM, Bullard DC, Tedder TF, Steeber DA (2002) A functional role for circulating mouse L-selectin in regulating leukocyte/endothelial cell interactions in vivo. J Immunol 169: 2034–2043PubMedGoogle Scholar
  7. 7.
    Steeber DA, Engel P, Miller AS, Sheetz MP, Tedder TF (1997) Ligation of L-selectin through conserved regions within the lectin domain activates signal transduction pathways and integrin function in human, mouse, and rat leukocytes. J Immunol 159: 952–963PubMedGoogle Scholar
  8. 8.
    Giblin PA, Hwang ST, Katsumoto TR, Rosen SD (1997) Ligation of L-selectin on T lymphocytes activates β1 integrins and promotes adhesion to fibronectin. J Immunol 159: 3498–3507PubMedGoogle Scholar
  9. 9.
    Tsang YTM, Neelamegham S, Hu Y, Berg EL, Burns AR, Smith CW, Simon SI (1997) Synergy between L-selectin signaling and chemotactic activation during neutrophil adhesion and transmigration. J Immunol 159: 4566–4577PubMedGoogle Scholar
  10. 10.
    Ding Z, Issekutz TB, Downey GP, Waddell TK (2003) L-selectin enhances functional expression of surface CXCR4 in lymphocytes: implication for cellular activation during adhesion and migration. Blood 101: 4245–4252PubMedGoogle Scholar
  11. 11.
    Tedder TF, Matsuyama T, Rothstein DM, Schlossman SF, Morimoto C (1990) Human antigen-specific memory T cells express the homing receptor necessary for lymphocyte recirculation. Eur J Immunol 20: 1351–1355PubMedGoogle Scholar
  12. 12.
    Griffin JD, Spertini O, Ernst TJ, Belvin MP, Levine HB, Kanakura Y, Tedder TF (1990) GM-CSF and other cytokines regulate surface expression of the leukocyte adhesion molecule-1 on human neutrophils, monocytes, and their precursors. J Immunol 145: 576–584PubMedGoogle Scholar
  13. 13.
    Ord DC, Ernst TJ, Zhou LJ, Rambaldi A, Spertini O, Griffin JD, Tedder TF (1990) Structure of the gene encoding the human leukocyte adhesion molecule-1 (TQ1, Leu-8) of lymphocytes and neutrophils. J Biol Chem 265: 7760–7767PubMedGoogle Scholar
  14. 14.
    Kahn J, Ingraham RH, Shirley F, Magaki GI, Kishimoto TK (1994) Membrane proximal cleavage of L-selectin: identification of the cleavage site and a 6-kD transmembrane peptide fragment of L-selectin. J Cell Biol 125: 461–470PubMedGoogle Scholar
  15. 15.
    Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN et al (1998) An essential role for ectodomain shedding in mammalian development. Science 282: 1281–1284PubMedGoogle Scholar
  16. 16.
    Li Y, Brazzell J, Herrera A, Walcheck B (2006) ADAM17 deficiency by mature neutrophils has differential effects on L-selectin shedding. Blood 108: 2275–2279PubMedGoogle Scholar
  17. 17.
    Walcheck B, Alexander SR, St. Hill CA, Matala E (2003) ADAM-17-independent shedding of L-selectin. J Leukoc Biol 74: 389–394PubMedGoogle Scholar
  18. 18.
    Tamatani T, Kitamura F, Kuida K, Shirao M, Mochizuki M, Suematsu M, Schmid-Schöbein G, Watanabe K, Tsurufuji S, Miyasaka M (1993) Characterization of rat LECAM-1 (L-selectin) by the use of monoclonal antibodies and evidence for the presence of soluble LECAM-1 in rat sera. Eur J Immunol 23: 2181–2188PubMedGoogle Scholar
  19. 19.
    Spertini O, Schleiffenbaum B, White-Owen C, Ruiz Jr P, Tedder TF (1992) ELISA for quantitation of L-selectin shed from leukocytes in vivo. J Immunol Methods 156: 115–123PubMedGoogle Scholar
  20. 20.
    Ferri LE, Swartz D, Christou NV (2001) Soluble L-selectin at levels present in septic patients diminishes leukocyte-endothelial cell interactions in mice in vivo: a mechanism for decreased leukocyte delivery to remote sites in sepsis. Crit Care Med 29: 117–122PubMedGoogle Scholar
  21. 21.
    Faveeuw C, Preece G, Ager A (2001) Transendothelial migration of lymphocytes across high endothelial venules into lymph nodes is affected by metalloproteinases. Blood 98: 688–695PubMedGoogle Scholar
  22. 22.
    Jutila MA, Rott L, Berg EL, Butcher EC (1989) Function and regulation of the neutrophil MEL-14 antigen in vivo: comparison with LFA-1 and MAC-1. J Immunol 143: 3318–3324PubMedGoogle Scholar
  23. 23.
    Smith CW, Kishimoto TK, Abbass O, Hughes B, Rothlein R, McIntire LV, Butcher E, Anderson DC (1991) Chemotactic factors regulate lectin adhesion molecule 1 (LECAMl)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro. J Clin Invest 87: 609–618PubMedGoogle Scholar
  24. 24.
    Preece G, Murphy G, Ager A (1996) Metalloproteinase-mediated regulation of L-selectin levels on leucocytes. J Biol Chem 271: 11634–11640PubMedGoogle Scholar
  25. 25.
    Walcheck B, Kahn J, Fisher JM, Wang BB, Fisk RS, Payan DG, Feehan C, Belagen R, Darlak K, Spatola AF et al (1996) Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature 380: 720–723PubMedGoogle Scholar
  26. 26.
    Hafezi-Moghadam A, Ley K (1999) Relevance of L-selectin shedding for leukocyte rolling in vivo. J Exp Med 189: 939–947PubMedGoogle Scholar
  27. 27.
    Hafezi-Moghadam A, Thomas KL, Prorock AJ, Huo Y, Ley K (2001) L-selectin shedding regulates leukocyte recruitment. J Exp Med 193: 863–872PubMedGoogle Scholar
  28. 28.
    Allport JR, Ding HT, Ager A, Steeber DA, Tedder TF, Luscinskas FW (1997) L-selectin shedding does not regulate human neutrophil attachment, rolling or transmigration across human vascular endothelium in vitro. J Immunol 158: 4365–4372PubMedGoogle Scholar
  29. 29.
    Ventun GM, Tu L, Kadono T, Khan AI, Fujimoto Y, Oshel P, Bock CB, Miller AS, Albrecht RM, Kubes P et al (2003) Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity 19: 713–724Google Scholar
  30. 30.
    Galkina E, Tanousis K, Preece G, Tolaini M, Kioussis D, Florey O, Haskard DO, Tedder TF, Ager A (2003) L-selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. J Exp Med 198:1323–1335PubMedGoogle Scholar
  31. 31.
    Spertini O, Kansas GS, Reimann KA, Mackay CR, Tedder TF (1991) Functional and evolutionary conservation of distinct epitopes on the leukocyte adhesion molecule-1 (LAM-1) that regulate leukocyte migration. J Immunol 147: 942–949PubMedGoogle Scholar
  32. 32.
    Tu L, Chen A, Delahunty MD, Moore KL, Watson S, McEver RP, Tedder TF (1996) L-selectin binds to P-selectin glycoprotein ligand-1 on leukocytes. Interactions between the lectin, EGF and consensus repeat domains of the selectins determine ligand binding specificity. J Immunol 156: 3995–4004Google Scholar
  33. 33.
    Siegelman MH, Cheng IC, Weissman IL, Wakeland EK (1990) The mouse lymph node homing receptor is identical with the lymphocyte cell surface marker Ly-22: Role of the EGF domain in endothelial binding. Cell 61: 611–622PubMedGoogle Scholar
  34. 34.
    Kansas GS, Spertini O, Stoolman LM, Tedder TF (1991) Molecular mapping of functional domains of the leukocyte receptor for endothelium, LAM-1. J Cell Biol 114: 351–358PubMedGoogle Scholar
  35. 35.
    Kansas GS, Saunders KB, Ley K, Zakrzewicz A, Gibson RM, Furie BC, Furie B, Tedder TF (1994) A role for the epidermal growth factor-like domain of P-selectin in ligand recognition and cell adhesion. J Cell Biol 124: 609–618PubMedGoogle Scholar
  36. 36.
    Gibson RM, Kansas GS, Tedder TF, Furie B, Furie BC (1995) Lectin and epidermal growth factor domains of P-selectin at physiological density are the recognition unit for leukocyte binding. Blood 85: 151–158PubMedGoogle Scholar
  37. 37.
    Pigott R, Needham LA, Edwards RM, Walker C, Power C (1991) Structural and functional studies of the endothelial activation antigen endothelial leukocyte adhesion molecule-1 using a panel of monoclonal antibodies. J Immunol 147: 130–135PubMedGoogle Scholar
  38. 38.
    Patel KD, Nollert MU, McEver RP (1995) P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J Cell Biol 131: 1893–1902PubMedGoogle Scholar
  39. 39.
    Li SH, Burns DK, Rumberger JM, Presky DH, Wilkinson VL, Anosterio M Jr, Wolitzky BA, Norton CR, Familletti PC, Kim KJ et al (1994) Consensus repeat domains of Eselectin enhance ligand binding. J Biol Chem 269: 4431–4437PubMedGoogle Scholar
  40. 40.
    Erlandsen SL, Hasslen SR, Nelson RD (1993) Detection and spatial distribution of the beta 2 integrin (Mac-1) and L-selectin (LECAM-1) adherence receptors on human neutrophils by high-resolution field emission SEM. J Histochem Cytochem 41: 327–333PubMedGoogle Scholar
  41. 41.
    Bruehl RE, Springer TA, Bainton DF (1996) Quantitation of L-selectin distribution on human leukocyte microvilli by immunogold labeling and electron microscopy. J Histochem Cytochem 44: 835–844PubMedGoogle Scholar
  42. 42.
    von Andrian UH, Hasslen SR, Nelson SL, Erlandsen SL, Butcher EC (1995) A central role for microvillus receptor presentation in leukocyte adhesion under flow. Cell 82: 989–999Google Scholar
  43. 43.
    Lowe JB (2002) Glycosylation in the control of selectin counter-receptor structure and function. Immunol Rev 186: 19–36PubMedGoogle Scholar
  44. 44.
    Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22: 129–156PubMedGoogle Scholar
  45. 45.
    Imai Y, Singer MS, Fennie C, Lasky LA, Rosen SD (1991) Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor. J Cell Biol 113: 1213–1221PubMedGoogle Scholar
  46. 46.
    Spertini O, Cordey A-S, Monai N, Giuffrè L, Schapira M (1996) P-selectin glycoprotein ligand-1 is a ligand for L-selectin on neutrophils, monocytes, and CD34+ hematopoietic progenitor cells. J Cell Biol 135: 523–531PubMedGoogle Scholar
  47. 47.
    Huang K, Geoffroy JS, Singer MS, Rosen SD (1991) A lymphocyte homing receptor (L-selectin) mediates the in vitro attachment of lymphocytes to myelinated tracts of the central nervous system. J Clin Invest 88: 1778–1783PubMedGoogle Scholar
  48. 48.
    Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yang ZQ, Kiessling LL, Rosen SD, Fisher SJ (2003) Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science 299: 405–408PubMedGoogle Scholar
  49. 49.
    Borsig L, Wong R, Hynes RO, Varki NM, Varki A (2002) Synergistic effects of Land P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Troc Natl Acad Sci USA 99: 2193–2198Google Scholar
  50. 50.
    Rosen SD, Bertozzi CR (1994) The selectins and their ligands. Curr Opin Cell Biol 6: 663–673PubMedGoogle Scholar
  51. 51.
    Streeter PR, Rouse BTN, Butcher EC (1988) Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J Cell Biol 107: 1853–1862PubMedGoogle Scholar
  52. 52.
    Maly P, Thall AD, Petrymak B, Rogers CE, Smith PL, Marks RM, Kelly RJ, Gersten KM, Cheng G, Saunders TL et al (1996) The α(1,3) fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86: 643–653PubMedGoogle Scholar
  53. 53.
    Suzuki A, Andrew DP, Gonzalo J, Fukumoto M, Spellberg J, Hashiyama M, Takimoto H, Gerwin N, Webb I, Molineux G et al (1996) CD34-deficient mice have reduced eosinophil accumulation after allergen exposure and show a novel crossreactive 90-kD protein. Blood 87: 3550–3562PubMedGoogle Scholar
  54. 54.
    Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88:3259–3287PubMedGoogle Scholar
  55. 55.
    Sperandio M (2006) Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS J 273: 4377–4389PubMedGoogle Scholar
  56. 56.
    Kimura N, Mitsuoka C, Kanamori A, Hiraiwa N, Uchimura K, Muramatsu T, Tamatani T, Kansas GS, Kannagi R (1999) Reconstitution of functional L-selectin ligands on a cultured human endothelial cell line by cotransfection of α1->3 fusosyltransferase VII and newly cloned GlcNAcβ:6-sulfotransferase cDNA. Troc Natl Acad Sci USA 96: 4530–4535Google Scholar
  57. 57.
    M’Rini C, Cheng G, Schweitzer C, Cavanagh LL, Palframan RT, Mempel TR, Warnock RA, Lowe JB, Quackenbush EJ, Von Andrian UH (2003) A novel endothelial L-selectin ligand activity in lymph node medulla that is regulated by α(1,3)-fucosyltransferase-IV. J Exp Med 198: 1301–1312Google Scholar
  58. 58.
    Sperandio M, Frommhold D, Babushkina I, Ellies LG, Olson TS, Smith ML, Fritzsching B, Pauly E, Smith DF, Nobiling R et al (2006) Alpha2,3-Sialyltransferase-IV is essential for L-selectin ligand function in inflammation. Eur J Immunol 36: 3207–3215PubMedGoogle Scholar
  59. 59.
    Li X, Tu L, Murphy PG, Kadono T, Steeber DA, Tedder TF (2001) CHST1 and CHST2 sulfotransferase expression by vascular endothelial cells regulates shear-resistant leukocyte rolling via L-selectin. J Leukoc Biol 69: 565–574PubMedGoogle Scholar
  60. 60.
    Li X, Tedder TF (1999) CHST1 and CHST2 sulfotransferases expressed by human vascular endothelial cells: cDNA cloning, expression, and chromosomal localization. Genomtcs 55: 345–347Google Scholar
  61. 61.
    Uchimura K, Gauguet JM, Singer MS, Tsay D, Kannagi R, Muramatsu T, von Andrian UH, Rosen SD (2005) A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat Immunol 6: 1105–1113PubMedGoogle Scholar
  62. 62.
    Kawashima H, Petryniak B, Hiraoka N, Mitoma J, Huckaby V, Nakayama J, Uchimura K, Kadomatsu K, Muramatsu T, Lowe JB et al (2005) N-Acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat Immunol 6: 1096–1104PubMedGoogle Scholar
  63. 63.
    Miyasaka M, Tanaka T (2004) Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 4: 360–370PubMedGoogle Scholar
  64. 64.
    Kanda H, Tanaka T, Matsumoto M, Umemoto E, Ebisuno Y, Kinoshita M, Noda M, Kannagi R, Hirata T, Murai T et al (2004) Endomucin, a sialomucin expressed in high endothelial venules, supports L-selectin-mediated rolling. Int Immunol 16: 1265–1274PubMedGoogle Scholar
  65. 65.
    Umemoto E, Tanaka T, Kanda H, Jin S, Tohya K, Otani K, Matsutani T, Matsumoto M, Ebisuno Y, Jang MH et al (2006) Nepmucin, a novel HEV sialomucin, mediates Lselectin-dependent lymphocyte rolling and promotes lymphocyte adhesion under flow. / Exp Med 203: 1603–1614Google Scholar
  66. 66.
    Sassetti C, Tangemann K, Singer MS, Kershaw DB, Rosen SD (1998) Identification of podocalyxin-like protein as an HEV ligand for L-selectin: parallels to CD34. J Exp Med 187: 1965–1975PubMedGoogle Scholar
  67. 67.
    Berg EL, McEvoy LM, Berlin C, Bargatze RF, Butcher EC (1993) L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature 366: 695–698PubMedGoogle Scholar
  68. 68.
    Drayson MT, Ford WL (1984) Afferent lymph and lymph borne cells: their influence on lymph node function. Immunobiology 168: 362–379PubMedGoogle Scholar
  69. 69.
    Hendriks HR, Duijvestijn AM, Kraal G (1987) Rapid decrease in lymphocyte adherence to high endothelial venules in lymph nodes deprived of afferent lymphatic vessels. Eur J Immunol 17: 1691–1695PubMedGoogle Scholar
  70. 70.
    Mebius RE, Streeter PR, Breve J, Duijvestijn AM, Kraal G (1991) The influence of afferent lymphatic vessel interruption on vascular addressin expression. J Cell Biol 115: 85–95PubMedGoogle Scholar
  71. 71.
    Mebius RE, Dowbenko D, Williams A, Fennie C, Lasky LA, Watson SR (1993) Expression of GlyCAM-1, an endothelial ligand for L-selectin, is affected by afferent lymphatic flow. J Immunol 151: 6769–6776PubMedGoogle Scholar
  72. 72.
    Lacorre DA, Baekkevold ES, Garrido I, Brandtzaeg P, Haraldsen G, Amalric F, Girard JP (2004) Plasticity of endothelial cells: rapid dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the lymphoid tissue microenvironment. Blood 103: 4164–4172PubMedGoogle Scholar
  73. 73.
    Mebius RE, Breve J, Duijvestijn AM, Kraal G (1990) The function of high endothelial venules in mouse lymph nodes stimulated by oxazolone. Immunology 71: 423–427PubMedGoogle Scholar
  74. 74.
    Steeber DA, Erickson CM, Hodde KC, Albrecht RM (1987) Vascular changes in popliteal lymph nodes due to antigen challenge in normal and lethally irradiated mice. Scanning Mtcrosc 1: 831–839Google Scholar
  75. 75.
    Kittas C, Henry L (1981) BCG-induced changes in the post capillary venules of the guinea pig lymph node. Lymphology 14: 24–28PubMedGoogle Scholar
  76. 76.
    Webster B, Ekland EH, Agle LM, Chyou S, Ruggieri R, Lu TT (2006) Regulation of lymph node vascular growth by dendritic cells. J Exp Med 203: 1903–1913PubMedGoogle Scholar
  77. 77.
    Hoke D, Mebius RE, Dybdal N, Dowbenko D, Gribling P, Kyle C, Baumhueter S, Watson SR (1995) Selective modulation of the expression of L-selectin ligands by an immune response. Curr Biol 5: 670–678PubMedGoogle Scholar
  78. 78.
    Swarte VV, Joziasse DH, Van den Eijnden DH, Petryniak B, Lowe JB, Kraal G, Mebius RE (1998) Regulation of fucosyltransferase-VII expression in peripheral lymph node high endothelial venules. Eur J Immunol 28: 3040–3047PubMedGoogle Scholar
  79. 79.
    Giuffrè L, Cordey A-S, Monai N, Tardy Y, Schapira M, Spertim O (1997) Monocyte adhesion to activated aortic endothelium: role of L-selectin and heparan sulfate proteoglycans. J Cell Biol 136: 945–956PubMedGoogle Scholar
  80. 80.
    Robinson LA, Tu LL, Steeber DA, Preis O, Platt JL, Tedder TF (1998) The role of adhesion molecules in human leukocyte attachment to porcine vascular endothelium: implications for xenotransplantation. J Immunol 161: 6931–6938PubMedGoogle Scholar
  81. 81.
    Zakrzewicz A, Grafe M, Terbeek D, Bongrazio M, Auch-Schwelk W, Walzog B, Graf K, Fleck E, Ley K, Gaehtgens P (1997) L-selectin-dependent leukocyte adhesion to microvascular but not to macrovascular endothelial cells of the human coronary system. Blood 89: 3228–3235PubMedGoogle Scholar
  82. 82.
    Spertim O, Luscinskas FW, Kansas GS, Munro JM, Griffin JD, Gimbrone MA Jr, Tedder TF (1991) Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J Immunol 147: 2565–2573Google Scholar
  83. 83.
    Cannella B, Cross AH, Raine CS (1990) Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. J Exp Med 172: 1521–1524PubMedGoogle Scholar
  84. 84.
    Kabel PJ, Voorbij HAM, de Haan-Meulman M, Pals ST, Drexhage HA (1989) High endothelial venules present in lymphoid cell accumulations in thyroids affected by autoimmune disease: a study in men and BB rats of functional activity and development. J Clin Endocnnol Metab 68: 744–751Google Scholar
  85. 85.
    van Dinther-Janssen ACHM, Pals ST, Scheper R, Breedveld F, Meijer CJLM (1990) Dendritic cells and high endothelial venules in the rheumatoid synovial membrane. J Rheumatol 17: 11–17PubMedGoogle Scholar
  86. 86.
    Hanninen A, Taylor C, Streeter PR, Stark LS, Sarte JM, Shizuru JA, Simell O, Michie SA (1993) Vascular addressins are induced on islet vessels during insulitis in nonobese diabetic mice and are involved in lymphoid binding to islet endothelium. J Clin Invest 92: 2509–2515PubMedGoogle Scholar
  87. 87.
    Rosen SD, Tsay D, Hemmerich S, Abraham WM (2005) Therapeutic targeting of endothelial ligands for L-selectin (PNAd) in a sheep model of asthma. Am J Pathol 166: 935–944PubMedGoogle Scholar
  88. 88.
    Kirveskari J, Paavonen T, Hayry P, Renkonen R (2000) De novo induction of endothelial L-selectin ligands during kidney allograft rejection. J Am Soc Nephrol 11: 2358–2365PubMedGoogle Scholar
  89. 89.
    Rivera-Nieves J, Burcin TL, Olson TS, Morris MA, McDuffie M, Cominelli F, Ley K (2006) Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine lleitis. J Exp Med 203: 907–917PubMedGoogle Scholar
  90. 90.
    Lee MS, Sarvetnick N (1994) Induction of vascular addressins and adhesion molecules in the pancreas of IFN-gamma transgenic mice. J Immunol 152: 4597–4603PubMedGoogle Scholar
  91. 91.
    Sikorski EE, Hallmann R, Berg EL, Butcher EC (1993) The Peyer’s patch high endothelial receptor for lymphocytes, the mucosal addressin, is induced on a murine endothelial cell line by tumor necrosis factor-α and IL-1. J Immunol 151: 5239–5250PubMedGoogle Scholar
  92. 92.
    Pablos JL, Santiago B, Tsay D, Singer MS, Palao G, Galindo M, Rosen SD (2005) A HEV-restricted sulfotransferase is expressed in rheumatoid arthritis synovium and is induced by lymphotoxin-α/β and TNF-α in cultured endothelial cells. BMC Immunol 6: 6–15PubMedGoogle Scholar
  93. 93.
    Drayton DL, Yang X, Lee J, Lesslauer W, Ruddle NH (2003) Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J Exp Med 197: 1153–1163PubMedGoogle Scholar
  94. 94.
    Laszik Z, Jansen PJ, Cummings RD, Tedder TF, McEver RP, Moore KL (1996) P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some non-hematopoietic cells. Blood 88: 3010–3021PubMedGoogle Scholar
  95. 95.
    Sako D, Chang X-J, Barone KM, Vachino G, White HM, Shaw G, Veldman KM, Bean KM, Ahern TJ, Furie B et al (1993) Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 75: 1179–1186PubMedGoogle Scholar
  96. 96.
    Moore KL, Stults NL, Diaz S, Smith DF, Cummings RD, Varki A, McEver RP (1992) Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol 118: 445–456PubMedGoogle Scholar
  97. 97.
    Yang J, Hirata T, Croce K, Merrill-Skoloff G, Tchernychev B, Williams E, Flaumenhaft R, Furie BC, Furie B (1999) Targeted gene disruption demonstrates that P-selectin glycoprotein ligand-1 (PSGL-1) is required for P-selectin-mediated but not E-selectin-mediated neutrophil rolling and migration. J Exp Med 190: 1769–1782PubMedGoogle Scholar
  98. 98.
    Kanamori A, Kojima N, Uchimura K, Muramatsu T, Tamatani T, Berndt MC, Kansas GS, Kannagi R (2002) Distinct sulfation requirements of selectins disclosed using cells that support rolling mediated by all three selectins under shear flow. L-selectin prefers carbohydrate 6-sulfation to tyrosine sulfation, whereas P-selectin does not. J Biol Chem 277: 32578–32586PubMedGoogle Scholar
  99. 99.
    Bermmoulin MP, Zeng XL, Abbal C, Giraud S, Martinez M, Michielin O, Schapira M, Spertini O (2003) Molecular basis of leukocyte rolling on PSGL-1. Predominant role of core-2 O-glycans and of tyrosine sulfate residue 51. J Biol Chem 278: 37–47Google Scholar
  100. 100.
    Nicholson MW, Barclay AN, Singer MS, Rosen SD, van der Merwe PA (1998) Affinity and kinetic analysis of L-selectin (CD62L) binding to glycosylation-dependent cell-adhesion molecule-1. J Biol Chem 273: 763–770PubMedGoogle Scholar
  101. 101.
    Leppanen A, Yago T, Otto VI, McEver RP, Cummings RD (2003) Model glycosulfopeptides from PSGL-1 require tyrosine sulfation and a core-2 branched O-glycan to bind to L-selectin. J Biol Chem 278: 26391–26400PubMedGoogle Scholar
  102. 102.
    Fieger CB, Sassetti CM, Rosen SD (2003) Endoglycan, a member of the CD34 family, functions as an L-selectin ligand through modifications with tyrosine sulfation and sialyl Lewis X. J Biol Chem 278: 27390–27398PubMedGoogle Scholar
  103. 103.
    Sassetti C, Van Zante M, Rosen SD (2000) Identification of endoglycan, a member of the CD34/podocalyxin family of sialomucins. J Biol Chem 275: 9001–9010PubMedGoogle Scholar
  104. 104.
    Bargatze RF, Kurk S, Butcher EC, Jutila MA (1994) Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J Exp Med 180: 1785–1792PubMedGoogle Scholar
  105. 105.
    Alon R, Fuhlbrigge RC, Finger EB, Springer TA (1996) Interactions through L-selectin between leukocytes and adherent leukocytes nucleate rolling adhesions on selectins and VCAM-1 in shear flow. J Cell Biol 135: 849–865PubMedGoogle Scholar
  106. 106.
    Eriksson EE, Xie X, Werr J, Thoren P, Lindbom L (2001) Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med 194: 205–218PubMedGoogle Scholar
  107. 107.
    Sperandio M, Smith ML, Forlow SB, Olson TS, Xia L, McEver RP, Ley K (2003) P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J Exp Med 197: 1355–1363PubMedGoogle Scholar
  108. 108.
    Butcher EC (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67: 1033–1036PubMedGoogle Scholar
  109. 109.
    Constantin G, Majeed M, Giagulli C, Piccio L, Kim JY, Butcher EC, Laudanna C (2000) Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13: 759–769PubMedGoogle Scholar
  110. 110.
    Chan JR, Hyduk SJ, Cybulsky MI (2001) Chemoattractants induce a rapid and transient upregulation of monocyte α4 integrin affinity for vascular cell adhesion molecule1 which mediate arrest: an early step in the process of emigration. J Exp Med 193: 1149–1158PubMedGoogle Scholar
  111. 111.
    Steeber DA, Tedder TF (2000) Adhesion molecule cascades direct lymphocyte recirculation and leukocyte migration during inflammation. Immunol Res 22: 299–317PubMedGoogle Scholar
  112. 112.
    Ley KE, Bullard D, Arbones ML, Bosse R, Vestweber D, Tedder TF, Beaudet AL (1995) Sequential contribution of Land P-selectin to leukocyte rolling in vivo. J Exp Med 181: 669–675PubMedGoogle Scholar
  113. 113.
    Tedder TF, Steeber DA, Chen A, Engel P (1995) The selectins: vascular adhesion molecules. FASEB J 9: 866–873PubMedGoogle Scholar
  114. 114.
    Kunkel EJ, Ley K (1996) Distinct phenotype of E-selectin-deficient mice. E-selectin is required for slow leukocyte rolling in vivo. Circ Res 79: 1196–1204PubMedGoogle Scholar
  115. 115.
    Ley K, Allietta M, Bullard DC, Morgan SJ (1998) The importance of E-selectin for firm leukocyte adhesion in vivo. Circ Res 83: 287–294PubMedGoogle Scholar
  116. 116.
    Arbones ML, Ord DC, Ley K, Radich H, Maynard-Curry C, Capon DJ, Tedder TF (1994) Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1: 247–260PubMedGoogle Scholar
  117. 117.
    Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD (1993) Leukocyte rolling and extravasation are severely compromised in P-selectin-deficient mice. Cell 74: 541–554PubMedGoogle Scholar
  118. 118.
    Jung U, Ley K (1999) Mice lacking two and all three selectins demonstrate overlapping and distinct functions for each selectin. J Immunol 162: 6755–6762PubMedGoogle Scholar
  119. 119.
    Finger EB, Pun KD, Alon R, Lawrence MB, von Andrian UH, Springer TA (1996) Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379: 266–269PubMedGoogle Scholar
  120. 120.
    Alon R, Chen S, Pun KD, Finger EB, Springer TA (1997) The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol 138: 1169–1180PubMedGoogle Scholar
  121. 121.
    Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell adhesion molecules. Nature 423: 190–193PubMedGoogle Scholar
  122. 122.
    Sarangapani KK, Yago T, Klopocki AG, Lawrence MB, Fieger CB, Rosen SD, McEver RP, Zhu C (2004) Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan. J Biol Chem 279: 2291–2298PubMedGoogle Scholar
  123. 123.
    Lou J, Yago T, Klopocki AG, Mehta P, Chen W, Zarnitsyna VI, Bovin NV, Zhu C, McEver RP (2006) Flow-enhanced adhesion regulated by a selectin interdomain hinge. J Cell Biol 174: 1107–1117PubMedGoogle Scholar
  124. 124.
    Alon R, Kassner PD, Carr MC, Finger EB, Hemler ME, Springer TA (1995) The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J Cell Biol 128: 1243–1253PubMedGoogle Scholar
  125. 125.
    Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC (1995) α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80: 413–422PubMedGoogle Scholar
  126. 126.
    Bargatze RF, Jutila MA, Butcher EC (1995) Distinct roles of L-selectin and integrins α4β7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep hypothesis confirmed and refined. Immunity 3: 99–108PubMedGoogle Scholar
  127. 127.
    Nandi A, Estess P, Siegelman M (2004) Bimolecular complex between rolling and firm adhesion receptors required for cell arrest: CD44 association with VLA-4 in T cell extravasation. Immunity 20: 455–465PubMedGoogle Scholar
  128. 128.
    Abitorabi MA, Pachynski RK, Ferrando RE, Tidswell M, Erle DJ (1997) Presentation of integrins on leukocyte microvilli: a role for the extracellular domain in determining membrane localization. J Cell Biol 139: 563–571PubMedGoogle Scholar
  129. 129.
    Kadono T, Venturi GM, Steeber DA, Tedder TF (2002) Leukocyte rolling velocities and migration are optimized by cooperative L-selectin and intercellular adhesion molecule-1 functions. J Immunol 169: 4542–4550PubMedGoogle Scholar
  130. 130.
    Waddell TK, Fialkow L, Chan CK, Kishimoto TK, Downey GP (1994) Potentiation of the oxidative burst of human neutrophils. A signaling role for L-selectin. J Biol Chem 269:18485–18491PubMedGoogle Scholar
  131. 131.
    Laudanna C, Constantin G, Baron P, Scarpini E, Scarlato G, Cabrini G, Dechecchi C, Rossi F, Cassatella MA, Berton G (1994) Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-α and interleukin-8 mRNA in human neutrophils. Evidence for a role of L-selectin as a signaling molecule. J Biol Chem 269: 4021–4026PubMedGoogle Scholar
  132. 132.
    Waddell TK, Fialkow L, Chan CK, Kishimoto TK, Downey GP (1995) Signaling functions of L-selectin. Enhancement of tyrosine phosphorylation and activation of MAP kinase. J Biol Chem 270: 15403–15411PubMedGoogle Scholar
  133. 133.
    Chen C, Ba X, Xu T, Cui L, Hao S, Zeng X (2006) c-Abl is involved in F-actin assembly triggered by L-selectin crosslinking. J Biochem 140: 229–235PubMedGoogle Scholar
  134. 134.
    Brenner B, Weinmann S, Grassme H, Lang F, Linderkamp O, Gulbins E (1997) L-selectin activates JNK via src-like tyrosine kinases and the small G-protein Rac. Immunology 92: 214–219PubMedGoogle Scholar
  135. 135.
    Brenner B, Gulbins E, Schlottmann K, Koppenhoefer U, Busch GL, Walzog B, Steinhausen M, Coggeshall KM, Linderkamp O, Lang F (1996) L-selectin activates the Ras pathway via the tyrosine kinase p56lck. Proc Natl Acad Sci USA 93: 15376–15381PubMedGoogle Scholar
  136. 136.
    Brenner B, Kadel S, Grigorovich S, Linderkamp O (2002) Mechanisms of L-selectinmduced activation of nuclear factor of activated T lymphocytes (NFAT). Biochem Biophys Res Commun 291: 237–244PubMedGoogle Scholar
  137. 137.
    Ding Z, Kawashima H, Miyasaka M (2000) Sulfatide binding and activation of leukocytes through an L-selectin-independent pathway. J Leukoc Biol 68: 65–72PubMedGoogle Scholar
  138. 138.
    Simon SI, Burns AR, Taylor AD, Gopalan PK, Lynam EB, Sklar LA, Smith CW (1995) L-selectin (CD62L) cross-linking signals neutrophil adhesive functions via the Mac-1 (CDllb/CD18) β2-integrin. J Immunol 155: 1502–1514PubMedGoogle Scholar
  139. 139.
    Strauch UG, Holzmann B (1993) Triggering of L-selectin (gp90MEL-14) induces homotypic lymphocyte adhesion by a mechanism independent of LFA-1. Int Immunol 5: 393–398PubMedGoogle Scholar
  140. 140.
    Hwang ST, Singer MS, Giblin PA, Yednock TA, Bacon KB, Simon SI, Rosen SD (1996) GlyCAM-1, a physiologic ligand for L-selectin, activates β2 integrins on naive peripheral lymphocytes. J Exp Med 184: 1343–1348PubMedGoogle Scholar
  141. 141.
    Kanwar S, Steeber DA, Tedder TF, Hickey MJ, Kubes P (1999) Overlapping roles for L-selectin and P-selectin in antigen-induced immune responses in the microvasculature. J Immunol 162: 2709–2716PubMedGoogle Scholar
  142. 142.
    Hickey MJ, Forster M, Mitchell D, Kaur J, De Caigny C, Kubes P (2000) L-selectin facilitates emigration and extravascular locomotion of leukocytes during acute inflammatory responses in vivo. J Immunol 165: 7164–7170PubMedGoogle Scholar
  143. 143.
    Subramanian H, Kodera M, Conway RM, Steeber DA (2006) Signaling through Lselectin enhances T cell chemotaxis to secondary lymphoid tissue chemokine (SLC). J Immunol 176: S37–38Google Scholar
  144. 144.
    Defilippi P, Rosso A, Dentelli P, Calvi C, Garbarino G, Tarone G, Pegoraro L, Brizzi MF (2005) β1 Integrin and IL-3R coordinately regulate STAT5 activation and anchoragedependent proliferation. J Cell Btol 168: 1099–1108Google Scholar
  145. 145.
    Haribabu B, Steeber DA, Ali H, Richardson RM, Snyderman R, Tedder TF (1997) Chemoattractant receptor-induced phosphorylation of L-selectin. J Biol Chem 272: 13961–13965PubMedGoogle Scholar
  146. 146.
    Kilian K, Dernedde J, Mueller E-C, Bahr I, Tauber R (2004) The interaction of protein kinase C isozymes α, ⇔, θ with the cytoplasmic domain of L-selectin is modulated by phosphorylation of the receptor. J Biol Chem 279: 34472–34480PubMedGoogle Scholar
  147. 147.
    Li X, Steeber DA, Tang MLK, Farrar MA, Perlmutter RM, Tedder TF (1998) Regulation of L-selectin-mediated rolling through receptor dimerization. J Exp Med 188: 1385–1390PubMedGoogle Scholar
  148. 148.
    Dwir O, Steeber DA, Schwarz US, Camphausen RT, Kansas GS, McEver RP, Tedder TF, Alon R (2002) L-selectin dimerization enhances tether formation to properly clustered ligand: evidence that shear stress increases local availability of selectin ligands at adhesive contacts. J Biol Chem 277: 21130–21139PubMedGoogle Scholar
  149. 149.
    Kansas GS, Ley K, Munro JM, Tedder TF (1993) Regulation of leukocyte rolling and adhesion to HEV through the cytoplasmic domain of L-selectin. J Exp Med 177: 833–838PubMedGoogle Scholar
  150. 150.
    Dwir O, Kansas GS, Alon R (2001) Cytoplasmic anchorage of L-selectin controls leukocyte capture and rolling by increasing the mechanical stability of the selectin tether. J Cell Biol 155: 145–156PubMedGoogle Scholar
  151. 151.
    Pavalko FM, Walker DM, Graham L, Goheen M, Doerschuk CM, Kansas GS (1995) The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via alphaactinin: receptor positioning in microvilli does not require interaction with alphaactinin. J Cell Biol 129: 1155–1164PubMedGoogle Scholar
  152. 152.
    Ivetic A, Deka J, Ridley A, Ager A (2002) The cytoplasmic tail of L-selectin interacts with members of the ezrin-radixin-moesin (ERM) family of proteins: cell activationdependent binding of moesin but not ezrin. J Biol Chem 277: 2321–2329PubMedGoogle Scholar
  153. 153.
    Kahn J, Walcheck B, Migaki GI, Jutila MA, Kishimoto TK (1998) Calmodulin regulates L-selectin adhesion molecule expression and function through a protease-dependent mechanism. Cell 92: 809–818PubMedGoogle Scholar
  154. 154.
    Leid JG, Steeber DA, Tedder TF, Jutila MA (2001) Antibody binding to a conformationdependent epitope induces L-selectin association with the detergent-resistant cytoskeleton. J Immunol 166: 4899–4907PubMedGoogle Scholar
  155. 155.
    Evans SS, Schleider DM, Bowman LA, Francis ML, Kansas GS, Black JD (1999) Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix. J Immunol 162: 3615–3624PubMedGoogle Scholar
  156. 156.
    Mattila PE, Green CE, Schaff U, Simon SI, Walcheck B (2005) Cytoskeletal interactions regulate inducible L-selectin clustering. Am J Physiol Cell Physiol 289: C323–C332PubMedGoogle Scholar
  157. 157.
    Smalley DM, Ley K (2005) L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med 9: 255–266PubMedGoogle Scholar
  158. 158.
    Gowans JL, Knight EJ (1964) The route of recirculation of lymphocytes in the rat. Proc R Soc Lond B Biol Sci 159: 257–282PubMedGoogle Scholar
  159. 159.
    Stamper HB Jr, Woodruff JJ (1976) Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J Exp Med 144: 828–833PubMedGoogle Scholar
  160. 160.
    Gallatin WM, Weissman IL, Butcher EC (1983) A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304: 30–34PubMedGoogle Scholar
  161. 161.
    Steeber DA, Green NE, Sato S, Tedder TF (1996) Lymphocyte migration in L-selectindeficient mice: altered subset migration and aging of the immune system. J Immunol 157:1096–1106PubMedGoogle Scholar
  162. 162.
    Holzmann B, McIntyre BW, Weissman IL (1989) Identification of a munne Peyer’s patch-specific lymphocyte homing receptor as an integrin molecule with an a chain homologous to human VLA-4α. Cell 56: 37–46PubMedGoogle Scholar
  163. 163.
    Wagner N, Lohler J, Kunkel EJ, Ley K, Leung E, Krissansen G, Rajewsky K, Müller W (1996) Critical role for β7 integrins in formation of the gut-associated lymphoid tissue. Nature 382: 366–370PubMedGoogle Scholar
  164. 164.
    Steeber DA, Tang MLK, Zhang X-Q, Müller W, Wagner N, Tedder TF (1998) Efficient lymphocyte migration across high endothelial venules of mouse Peyer’s patches requires overlapping expression of L-selectin and β7 integrin. J Immunol 161: 6638–6647PubMedGoogle Scholar
  165. 165.
    Kunkel EJ, Ramos CL, Steeber DA, Müller W, Wagner N, Tedder TF, Ley K (1998) The roles of L-selectin, β7 integrins and P-selectin in leukocyte rolling and adhesion in high endothelial venules of Peyer’s patches. J Immunol 161: 2449–2456PubMedGoogle Scholar
  166. 166.
    Wagner N, Löhler J, Tedder TF, Rajewsky K, Müller W, Steeber DA (1998) L-selectin and ß7 integrin synergistically mediate lymphocyte migration to mesenteric lymph nodes. Eur J Immunol 28: 3832–3839PubMedGoogle Scholar
  167. 167.
    Nakache M, Berg E, Streeter P, Butcher E (1989) The mucosal vascular addressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes. Nature 337: 179–181PubMedGoogle Scholar
  168. 168.
    Streeter PR, Berg EL, Rouse BN, Bargatze RF, Butcher EC (1988) A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature 331: 41–46PubMedGoogle Scholar
  169. 169.
    Csencsits KL, Jutila MA, Pascual DW (1999) Nasal-associated lymphoid tissue: phenotypic and functional evidence for the primary role of peripheral node addressin in naive lymphocyte adhesion to high endothelial venules in a mucosal site. J Immunol 163: 1382–1389PubMedGoogle Scholar
  170. 170.
    Tedder TF, Steeber DA, Pizcueta P (1995) L-selectin deficient mice have impaired leukocyte recruitment into inflammatory sites. J Exp Med 181: 2259–2264PubMedGoogle Scholar
  171. 171.
    Catalina MD, Carroll MC, Arizpe H, Takashima A, Estess P, Siegelman MH (1996) The route of antigen entry determines the requirement for L-selectin during immune responses. J Exp Med 184: 2341–2351PubMedGoogle Scholar
  172. 172.
    Tang MLK, Hale LP, Steeber DA, Tedder TF (1997) L-selectin is involved in lymphocyte migration to sites of inflammation in the skin: delayed rejection of allografts in L-selectin-deficient mice. J Immunol 158: 5191–5199PubMedGoogle Scholar
  173. 173.
    Xu J, Grewal IS, Geba GP, Flavell RA (1996) Impaired primary T cell responses in Lselectin-deficient mice. J Exp Med 183: 589–598PubMedGoogle Scholar
  174. 174.
    Steeber DA, Green NE, Sato S, Tedder TF (1996) Humoral immune responses in L-selectin-deficient mice. J Immunol 157: 4899–4907PubMedGoogle Scholar
  175. 175.
    Csencsits KL, Walters N, Pascual DW (2001) Dichotomy of homing receptor dependence by mucosal effector B cells: αE versus L-selectin. J Immunol 167: 2441–2445PubMedGoogle Scholar
  176. 176.
    Pascual DW, White MD, Larson TL, Walters N (2001) Impaired mucosal immunity in L-selectin-deficient mice orally immunized with a Salmonella vaccine vector. J Immunol 167: 407–415PubMedGoogle Scholar
  177. 177.
    Galkina E, Kadl A, Sanders J, Varughese D, Sarembock IJ, Ley K (2006) Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med 203: 1273–1282PubMedGoogle Scholar
  178. 178.
    Mackay CR, Kimpton WG, Brandon MR, Cahill RNP (1988) Lymphocyte subsets show marked differences in their distribution between blood and the afferent and efferent lymph of peripheral lymph nodes. J Exp Med 167: 1755–1765PubMedGoogle Scholar
  179. 179.
    Abernethy NJ, Hay JB, Kimpton WG, Washington EA, Cahill RNP (1990) Nonrandom recirculation of small, CD4+ and CD8+ T lymphocytes in sheep: evidence for lymphocyte subset-specific endothelial cell recognition. Int Immunol 2: 231–238PubMedGoogle Scholar
  180. 180.
    Kimpton WG, Washington EA, Cahill RNP (1989) Recirculation of lymphocyte subsets (CD5+, CD4+, CD8+, SBU-T19+, and B cells) through gut and peripheral lymph nodes. Immunology 66: 69–75PubMedGoogle Scholar
  181. 181.
    Westermann J, Nagahori Y, Walter S, Heerwagen C, Miyasaka M, Pabst R (1994) B and T lymphocyte subsets enter peripheral lymph nodes and Peyer’s patches without preference in vivo: no correlation occurs between their localization in different types of high endothelial venules and the expression of CD44, VLA-4, LFA-1, ICAM-1, CD2 or L-selectin. Eur J Immunol 24: 2312–2316PubMedGoogle Scholar
  182. 182.
    Stevens SK, Weissman IL, Butcher EC (1982) Differences in the migration of B and T lymphocytes: organ-selective localization in vivo and the role of lymphocyte-endothelial cell recognition. J Immunol 128: 844–851PubMedGoogle Scholar
  183. 183.
    Sprent J, Basten A (1973) Circulating T and B lymphocytes of the mouse. II. Lifespan. Cell Immunol 7: 40–59PubMedGoogle Scholar
  184. 184.
    Kraal G, Weissman IL, Butcher EC (1983) Differences in in vivo distribution and homing of T cell subsets to mucosal vs nonmucosal lymphoid organs. J Immunol 130: 1097–1102PubMedGoogle Scholar
  185. 185.
    Tang MLK, Steeber DA, Zhang X-Q, Tedder TF (1998) Intrinsic differences in L-selectin expression levels affect T and B lymphocyte subset-specific recirculation pathways. J Immunol 160: 5113–5121PubMedGoogle Scholar
  186. 186.
    Andrew DP, Rott LS, Kilshaw PJ, Butcher EC (1996) Distribution of α4β7 and αEβ7 integrins on thymocytes, intestinal epithelial lymphocytes and peripheral lymphocytes. Eur J Immunol 26: 897–905PubMedGoogle Scholar
  187. 187.
    Witherden DA, Kimpton WG, Washington EA, Cahill RNP (1990) Non-random migration of CD4+, CD8+ and γ/δ+T19+ lymphocytes through peripheral lymph nodes. Immunology 70: 235–240PubMedGoogle Scholar
  188. 188.
    Washington EA, Kimpton WG, Cahill RNP (1988) CD4+ lymphocytes are extracted from blood by peripheral lymph nodes at different rates than other T cell subsets and B cells. Eur J Immunol 18: 2093–2096PubMedGoogle Scholar
  189. 189.
    Reynolds JD, Chin W, Shmoorkoff J (1988) T and B cells have similar recirculation kinetics in sheep. Eur J Immunol 18: 835–840PubMedGoogle Scholar
  190. 190.
    Chao CC, Jensen R, Dailey MO (1997) Mechanisms of L-selectin regulation by activated T cells. J Immunol 159: 1686–1694PubMedGoogle Scholar
  191. 191.
    Tedder TF, Penta AC, Levine HB, Freedman AS (1990) Expression of the human leukocyte adhesion molecule, LAM1. Identity with the TQ1 and Leu-8 differentiation antigens. J Immunol 144: 532–540PubMedGoogle Scholar
  192. 192.
    Jung TM, Gallatin WM, Weissman IL, Dailey MO (1988) Down-regulation of homing receptors after T cell activation. J Immunol 141: 4110–4117PubMedGoogle Scholar
  193. 193.
    Bradley LM, Atkins GG, Swain SS (1992) Long-term memory CD4+ T cells from spleen lack MEL-14, the lymph node homing receptor. J Immunol 148: 324–331PubMedGoogle Scholar
  194. 194.
    Mobley JL, Dailey MO (1992) Regulation of adhesion molecule expression by CD8 T cells in vivo. I. Differential regulation of gp90MEL14 (LECAM-1), Pgp-1, LFA-1, and VLA-4α during the differentiation of CTL induced by allografts. J Immunol 148: 2348–2356PubMedGoogle Scholar
  195. 195.
    Kanegane H, Kasahare Y, Niida Y, Yachie A, Sugii S, Takatsu K, Taniguchi N, Miyawaki T (1996) Expression of L-selectin (CD62L) discriminates Thland Th2-like cytokineproducing memory CD4+ T cells. Immunology 87: 186–190PubMedGoogle Scholar
  196. 196.
    Matsuzaki S, Shinozaki K, Kobayashi N, Agematsu K (2005) Polarization of Th1/Th2 in human CD4 T cells separated by CD62L: analysis by transcription factors. Allergy 60: 780–787PubMedGoogle Scholar
  197. 197.
    van Wely CA, Beverley PCL, Brett SJ, Britten CJ, Tite JP (1999) Expression of L-selectin on Thl cells is regulated by IL-12. J Immunol 163: 1214–1221PubMedGoogle Scholar
  198. 198.
    Austrup F, Vestweber D, Borges E, Lohning M, Brauer R, Herz U, Renz H, Hallmann R, Scheffold A, Radbruch A et al (1996) P-and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 358: 81–83Google Scholar
  199. 199.
    Borges E, Pendl G, Eythner R, Steegmaier M, Zöllner O, Vestweber D (1997) The binding of T cell-expressed P-selectin glycoprotein ligand-1 to E-and P-selectin is differentially regulated. J Biol Chem 272: 28786–28792PubMedGoogle Scholar
  200. 200.
    Bonder CS, Norman MU, MacRae T, Mangan PR, Weaver CT, Bullard DC, McCafferty D-M, Kubes P (2005) P-selectin can support both Thl and Th2 lymphocyte rolling in the intestinal microvasculature. Am J Pathol 167: 1647–1660PubMedGoogle Scholar
  201. 201.
    Mangan PR, O’Quinn DB, Harrington L, Bonder CS, Kubes P, Kucik DF, Bullard DC, Weaver CT (2005) Both Th1 and Th2 cells require P-selectin glycoprotein ligand-1 for optimal rolling on inflamed endothelium. Am J Pathol 167: 1661–1675PubMedGoogle Scholar
  202. 202.
    Tietz W, Allemand Y, Borges E, von Laer D, Hallmann R, Vestweber D, Hamann A (1998) CD4+ T cells migrate into inflamed skin only if they express ligands for E-and P-selectin. J Immunol 161: 963–970PubMedGoogle Scholar
  203. 203.
    Wagers AJ, Waters CM, Stoolman LM, Kansas GS (1998) Interleukin 12 and interleukin 4 control T cell adhesion to endothelial selectins through opposite effects on α1,3-fucosyltransferase VII gene expression. J Exp Med 188: 2225–2231PubMedGoogle Scholar
  204. 204.
    Lim Y, Henault L, Wagers AJ, Kansas GS, Luscinskas FW, Lichtman AH (1999) Expression of functional selectin ligands on Th cells is differentially regulated by IL-12 and IL-4. J Immunol 162: 3193–3201PubMedGoogle Scholar
  205. 205.
    Blander JM, Visintin I, Janeway CA Jr., Medzhitov R (1999) α(1,3)-Fucosyltransferase VII and α(2,3)-sialyltransferase IV are up-regulated in activated CD4 T cells and maintained after their differentiation into Thl and migration into inflammatory sites. J Immunol 163: 3746–3752PubMedGoogle Scholar
  206. 206.
    Biedermann T, Schwarzler C, Lawmetschewandtner G, Thoma G, Carballido-Perrig N, Kund J, de Vries JE, Rot A, Carballido JM (2002) Targeting CLA/E-selectin interactions prevents CCR4-mediated recruitment of human Th2 memory cells to human skin in vivo. Eur J Immunol 32: 3171–3180PubMedGoogle Scholar
  207. 207.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Werner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector Thl7 and regulatory T cells. Nature 441: 235–238PubMedGoogle Scholar
  208. 208.
    Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-β induces development of the Thl7 lineage. Nature 441: 231–234PubMedGoogle Scholar
  209. 209.
    Swain SL, Bradley LM, Croft M, Tonkonogy S, Atkins G, Weinberg AD, Duncan DD, Hedrick SM, Dutton RW, Huston G (1991) Helper T cell subsets: phenotype, function, and the role of lymphokines in regulating their development. Immunol Rev 123: 115–144PubMedGoogle Scholar
  210. 210.
    Tsuji T, Nibu R, Iwai K, Kanegane H, Yachie A, Seki H, Miyawaki T, Taniguchi N (1994) Efficient induction of immunoglobulin production in neonatal naive B cells by memory CD4+ T cell subset expressing homing receptor L-selectin. J Immunol 152: 4417–4424PubMedGoogle Scholar
  211. 211.
    Picker LJ (1993) Regulation of tissue-selective T-lymphocyte homing receptors during the virgin to memory/effector cell transition in human secondary lymphoid tissues. Am Rev Respir Dis 148: S47–54Google Scholar
  212. 212.
    Campbell DJ, Butcher EC (2002) Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 195: 135–141PubMedGoogle Scholar
  213. 213.
    Mackay CR, Marston WL, Dudler L, Spertini O, Tedder TF, Hein WR (1992) Tissuespecific migration pathways by phenotypically distinct subpopulations of memory T cells. Eur J Immunol 22: 887–895PubMedGoogle Scholar
  214. 214.
    Mackay CR, Marston W, Dudler L (1992) Altered patterns of T cell migration through lymph nodes and skin following antigen challenge. Eur J Immunol 22: 2205–2210PubMedGoogle Scholar
  215. 215.
    Mackay CR, Marston WL, Dudler L (1990) Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med 171: 801–817PubMedGoogle Scholar
  216. 216.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401: 708–712PubMedGoogle Scholar
  217. 217.
    Masopust D, Vezys V, Marzo AL, Lefrancois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291: 2413–2417PubMedGoogle Scholar
  218. 218.
    Unsoeld H, Pircher H (2005) Complex memory T-cell phenotypes revealed by coexpression of CD62L and CCR7. J Virol 79: 4510–4513PubMedGoogle Scholar
  219. 219.
    Marzo AL, Klonowski KD, Le Bon A, Borrow P, Tough DF, Lefrancois L (2005) Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat Immunol 6: 793–799PubMedGoogle Scholar
  220. 220.
    Lefrancois L (2006) Development, trafficking, and function of memory T-cell subsets. Immunol Rev 211: 93–103PubMedGoogle Scholar
  221. 221.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologie self-tolerance maintained by activated T cell expressing IL-2 receptor a-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–1164PubMedGoogle Scholar
  222. 222.
    Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T (2001) Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182: 18–32PubMedGoogle Scholar
  223. 223.
    Shevach EM (2002) CD4+CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2: 389–400PubMedGoogle Scholar
  224. 224.
    Maloy KJ, Powrie F (2001) Regulatory T cells in the control of immune pathology. Nat Immunol 2: 816–822PubMedGoogle Scholar
  225. 225.
    Lee IV MK, Moore DJ, Jarrett BP, Lian MM, Deng S, Huang X, Markmann JW, Chiaccio M, Barker CF, Caton AJ et al (2004) Promotion of allograft survival by CD4+CD25+ regulatory T cells: evidence for in vivo inhibition of effector cell proliferation. J Immunol 172:6539–6544PubMedGoogle Scholar
  226. 226.
    Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, Bandeira A (2001) CD25+CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol 166: 3008–3018PubMedGoogle Scholar
  227. 227.
    Huehn J, Siegmund K, Lehmann JC, Siewart C, Haubold U, Feuerer M, Debes GF, Lauber J, Frey O, Przybylski GK (2004) Developmental stage, phenotype, and migration distinguish naiveand effector/memory-like CD4+ regulatory T cells. J Exp Med 199: 303–313PubMedGoogle Scholar
  228. 228.
    Ochando JC, Yopp AC, Yang Y, Garin A, Li Y, Boros P, Llodra J, Ding Y, Lira SA, Kreiger NR et al (2005) Lymph node occupancy is required for the peripheral development of alloantigen-specific Foxp3+ regulatory T cells. J Immunol 174: 6993–7005PubMedGoogle Scholar
  229. 229.
    Kim CH (2006) Migration and function of FoxP3+ regulatory T cells in the hematolymphoid system. Exp Hematol 34: 1033–1040PubMedGoogle Scholar
  230. 230.
    Venturi GM, Conway RM, Steeber DA, Tedder TF (2007) CD25+CD4+ regulatory T cell migration requires L-selectin expression: L-selectin transcriptional regulation balances constitutive receptor turnover. J Immunol 178: 291–300PubMedGoogle Scholar
  231. 231.
    Seekamp A, Till GO, Mulligan MS, Paulson JC, Anderson DC, Miyasaka M, Ward PA (1994) Role of selectins in local and remote tissue injury following ischemia and reperfusion. Am J Pathol 144: 592–598PubMedGoogle Scholar
  232. 232.
    Yan ZQ, Bolognesi MP, Steeber DA, Tedder TF, Chen LE, Seaber AV, Urbaniak JR (2000) Blockade of L-selectin attenuates reperfusion injury in a rat model. / Reconstr Microsurg 16: 227–233Google Scholar
  233. 233.
    Yadav SS, Howell DN, Gao W, Steeber DA, Harland RC, Clavien P-A (1998) L-selectin and ICAM-1 mediate reperfusion injury and neutrophil adhesion in the warm ischemie mouse liver. Am J Physiol 275: G1341–G1352PubMedGoogle Scholar
  234. 234.
    Tiegs G, Hentschel J, Wendel A (1992) A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 90: 196–203PubMedGoogle Scholar
  235. 235.
    Morikawa H, Hachiya K, Mizuhara H, Fujiwara H, Nishiguchi S, Shiomi S, Kuroki T, Kaneda K (2000) Sublobular veins as the main site of lymphocyte adhesion/transmigration and adhesion molecule expression in the porto-sinusoidal-hepatic venous system during concanavalin A-induced hepatitis in mice. Hepatology 31: 83–94PubMedGoogle Scholar
  236. 236.
    Massaguer A, Perez-Del-Pulgar S, Engel P, Serratosa J, Bosch J, Pizcueta P (2002) Concanavalin-A-induced liver injury is severely impaired in mice deficient in P-selectin. J Leukoc Biol 72: 262–270PubMedGoogle Scholar
  237. 237.
    Watanabe Y, Morita M, Akaike T (1996) Concanavalin A induces perforin-mediated but not Fas-mediated hepatic injury. Hepatology 24: 702–710PubMedGoogle Scholar
  238. 238.
    Kawasuji A, Hasegawa M, Horikawa M, Fujita T, Matsushita Y, Matsushita T, Fujimoto M, Steeber DA, Tedder TF, Takehara K et al (2006) L-selectin and intercellular adhesion molecule-1 regulate the development of concanavalin A-induced liver injury. J Leukoc Biol 79: 696–705PubMedGoogle Scholar
  239. 239.
    Doerschuk CM, Beyers N, Coxson HO, Wiggs B, Hogg JC (1993) Comparison of neutrophil and capillary diameters and their relation to neutrophil sequestration in the lung. J Appl Physiol 74: 3040–3045PubMedGoogle Scholar
  240. 240.
    Gebb SA, Graham JA, Hanger CC, Godbey PS, Capen RL, Doerschuk CM (1995) Sites of leukocyte sequestration in the pulmonary microcirculation. J Appl Physiol 79: 493–497PubMedGoogle Scholar
  241. 241.
    Yamaguchi K, Nishio K, Sato N, Tsumura H, Ichihara A, Kudo H (1997) Leukocyte kinetics in pulmonary microcirculation: observations using real-time confocal luminescence microscopy coupled with high-speed video analysis. Lab Invest 76: 809–822PubMedGoogle Scholar
  242. 242.
    Nishio K, Suzuki Y, Aoki T, Suzuki K, Miyata A, Sato N (1998) Differential contribution of various adhesion molecules to leukocyte kinetics in pulmonary microvessels of hyperoxia-exposed rat lungs. Am J Respir Crit Care Med 157: 599–609PubMedGoogle Scholar
  243. 243.
    Fiscus LC, Van Herpen J, Steeber DA, Tedder TF, Tang MLK (2001) L-selectin is required for the development of airway hyperresponsiveness but not airway inflammation in a murine model of asthma. J Allergy Clin Immunol 107: 1019–1024PubMedGoogle Scholar
  244. 244.
    Abraham WM, Ahmed A, Sabater JR., Lauredo IT, Botvinmkova Y, Bjercke RJ, Hu X, Revelle M, Kogan TP, Scott IL et al (1999) Selectin blockade prevents antigen-induced late bronchial responses and airway hyperresponsiveness in allergic sheep. Am J Respir Crit Care Med 159: 1205–1214PubMedGoogle Scholar
  245. 245.
    Hamaguchi Y, Nishizawa Y, Yasui M, Hasegawa M, Kaburagi Y, Komura K, Nagaoka T, Saito E, Shimada Y, Takehara K et al (2002) Intercellular adhesion molecule-1 and L-selectin regulate bleomycin-induced lung fibrosis. Am J Pathol 161: 1607–1618PubMedGoogle Scholar
  246. 246.
    Faveeuw C, Gagnerault MC, Lepault F (1994) Expression of homing and adhesion molecules in infiltrated islets of Langerhans and salivary glands of nonobese diabetic mice. J Immunol 152: 5969–5978PubMedGoogle Scholar
  247. 247.
    Yang X-D, Karin N, Tisch R, Steinman L, McDevitt HO (1993) Inhibition of insulitis and prevention of diabetes in nonobese diabetic mice by blocking L-selectin and very late antigen 4 adhesion receptors. Proc Natl Acad Sci USA 90: 10494–10498PubMedGoogle Scholar
  248. 248.
    Lepault F, Gagnerault MC, Faveeuw C, Bazin H, Boitard C (1995) Lack of L-selectin expression by cells transferring diabetes in NOD mice: insights into the mechanisms involved in diabetes prevention by Mel-14 antibody treatment. Eur J Immunol 25: 1502–1507PubMedGoogle Scholar
  249. 249.
    Friedline RH, Wong CP, Steeber DA, Tedder TF, Tisch R (2002) L-selectin is not required for T cell-mediated autoimmune diabetes. J Immunol 168: 2659–2666PubMedGoogle Scholar
  250. 250.
    Mora C, Grewal IS, Wong SF, Flavell RA (2004) Role of L-selectin in the development of autoimmune diabetes in non-obese diabetic mice. Int Immunol 16: 257–264PubMedGoogle Scholar
  251. 251.
    You S, Slehoffer G, Barriot S, Bach J, Chatenoud L (2004) Unique role of CD4+CD62L+ regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice. Proc Natl Acad Sa USA 101: 14580–14585Google Scholar
  252. 252.
    Gearing AJ, Newman W (1994) Circulating adhesion molecules in disease. Immunol Today 14: 506–512Google Scholar
  253. 253.
    Spertini O, Callegari P, Cordey AS, Hauert J, Joggi J, von Fliedner V, Schapira M (1994) High levels of the shed form of L-selectin (sL-selectin) are present in patients with acute leukemia and inhibit blast cell adhesion to activated endothelium. Blood 84: 1249–1256PubMedGoogle Scholar
  254. 254.
    Stucki A, Cordey AS, Monai N, de Flaugergues JC, Schapira M, Spertini O (1995) Cleaved L-selectin concentrations in meningeal leukaemia. Lancet 345: 286–289PubMedGoogle Scholar
  255. 255.
    Zetterberg E, Richter J (1993) Correlation between serum level of soluble L-selectin and leukocyte count in chronic myeloid and lymphocytic leukemia and during bone marrow transplantation. Eur J Haematol 51: 113–119PubMedGoogle Scholar
  256. 256.
    McGill SN, Ahmed NA, Hu F, Michel RP, Christou NV (1996) Shedding of L-selectin as a mechanism for reduced polymorphonuclear neutrophil exudation in patients with the systemic inflammatory response syndrome. Arch Surg 131: 1141–1147PubMedGoogle Scholar
  257. 257.
    Shimada Y, Sato S, Hasegawa M, Tedder TF, Takehara K (1999) Elevated serum Lselectin levels and abnormal regulation of L-selectin expression on leukocytes in atopic dermatitis: soluble L-selectin levels indicate disease severity. J Allergy Clin Immunol 104: 163–168PubMedGoogle Scholar
  258. 258.
    Inaoki M, Sato S, Shimada Y, Kawara S, Steeber DA, Tedder TF, Takehara K (2000) Decreased expression levels of L-selectin on subsets of leukocytes and increased serum L-selectin in severe psoriasis. Clin Exp Immunol 122: 484–492PubMedGoogle Scholar
  259. 259.
    Font J, Pizcueta P, Ramos-Casals M, Cervera R, Garcia-Carrasco M, Navarro M, Ingelmo M, Engel P (2000) Increased serum levels of soluble L-selectin (CD62L) in patients with active systemic lupus erythematosus (SLE). Clin Exp Immunol 119: 169–174PubMedGoogle Scholar
  260. 260.
    Extermann M, Bacchi M, Monai N, Fopp M, Fey M, Tichelli A, Schapira M, Spertini O (1998) Relationship between cleaved L-selectin levels and the outcome of acute myeloid leukemia. Blood 92: 3115–3122PubMedGoogle Scholar
  261. 261.
    Donnelly SC, Haslett C, Dransfield I, Robertson CE, Carter DC, Ross JA, Grant IS, Tedder TF (1994) Role of selectins in development of adult respiratory distress syndrome. Lancet 344: 215–219PubMedGoogle Scholar
  262. 262.
    Kogan TP, Dupre B, Bui H, McAbee KL, Kassir JM, Scott IL, Hu X, Vanderslice P, Beck PJ, Dixon RA (1998) Novel synthetic inhibitors of selectin-mediated cell adhesion: synthesis of 1,6-bis[3-(3-carboxymethylphenyl)-4-(2-α-D-mannopyranosyloxy)phenyl]hexane (TBC-1269). J Med Chem 41: 1099–1111PubMedGoogle Scholar
  263. 263.
    Davenpeck KL, Berens KL, Dixon RAF, Dupre B, Bochner BS (2000) Inhibition of adhesion of human neutrophils and eosinophils to P-selectin by the sialyl Lewis(x) antagonist TBC-1269. Preferential activity against neutrophil adhesion in vitro. J Allergy Clin Immunol 105: 769–775PubMedGoogle Scholar
  264. 264.
    Hicks AER, Abbitt KB, Dodd P, Ridger VC, Hellewell PG, Norman KE (2005) The anti-inflammatory effects of a selectin ligand mimetic, TBC-1269, are not a result of competitive inhibition of leukocyte rolling in vivo. J Leukoc Biol 77: 59–66PubMedGoogle Scholar
  265. 265.
    Beeh KM, Beier J, Meyer M, Buhl R, Zahlten R, Wolff G (2006) Bimosiamose, an inhaled small-molecule pan-selectin antagonist, attenuates late asthmatic reactions following allergen challenge in mild asthmatics: a randomized, double-blind, placebo-controlled clinical cross-over-trial. Pulm Pharmacol Ther 19: 233–241PubMedGoogle Scholar
  266. 266.
    Friedrich M, Bock D, Philipp S, Ludwig N, Sabat R, Wolfk K, Schroeter-Maas S, Aydt E, Kang S, Dam TN et al (2006) Pan-selectin antagonism improves psoriasis manifestation in mice and man. Arch Dermatol Res 297: 345–351PubMedGoogle Scholar
  267. 267.
    Co MS, Landolfi NF, Nagy JO, Tan JH, Vexler V, Vasquez M, Roark L, Yuan S, Hinton PR, Melrose J et al (1999) Properties and pharmacokinetics of two humanized antibodies specific for L-selectin. Immunotechnology 4: 253–266PubMedGoogle Scholar
  268. 268.
    Schlag G, Redl HR, Till GO, Davies J, Martin U, Dumont L (1999) Anti-L-selectin antibody treatment of hemorrhagic-traumatic shock in baboons. Crit Care Med 27: 1900–1907PubMedGoogle Scholar
  269. 269.
    Seekamp A, van Griensven M, Dhondt E, Diefenbeck M, Demeyer I, Vundelinckx G, Haas N, Schaechinger U, Wolowicka L, Rammelt S et al (2004) The effect of anti-Lselectin (aselizumab) in multiple traumatized patients-results of a phase II clinical trial. Crit Care Med 32: 2021–2028PubMedGoogle Scholar
  270. 270.
    Lasky LA, Singer MS, Dowbenko D, Imai Y, Henzel WJ, Grimley C, Fenme C, Gillett N, Watson SR, Rosen SD (1992) An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 69: 927–938PubMedGoogle Scholar
  271. 271.
    Brustein M, Kraal G, Mebius RE, Watson SR (1992) Identification of a soluble form of a ligand for the lymphocyte homing receptor. J Exp Med 176: 1415–1419PubMedGoogle Scholar
  272. 272.
    Hemmerich S, Butcher EC, Rosen SD (1994) Sulfation-dependent recognition of HEV-ligands by L-selectin and MECA 79, an adhesion-blocking mAb. J Exp Med 180: 2219–2226PubMedGoogle Scholar
  273. 273.
    Baumhueter S, Singer MS, Henzel W, Hemmerich S, Renz M, Rosen SD, Lasky LA (1993) Binding of L-selectin to the vascular sialomucin CD34. Science 262: 436–438Google Scholar
  274. 274.
    Jalkanen S, Bargatze RF, de de los Toyos J, Butcher EC (1987) Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85-95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J Cell Biol 105: 983–990PubMedGoogle Scholar
  275. 275.
    Greaves MF, Brown J, Molgaard HV, Spurr NK, Robertson D, Delia D, Sutherland DR (1992) Molecular features of CD34: A hematopoietic progenitor cell-associated molecule. Leukemia 6: 31–36PubMedGoogle Scholar
  276. 276.
    Kershaw DB, Beck SG, Wharram BL, Wiggins JE, Goyal M, Thomas PE, Wiggins RC (1997) Molecular cloning and characterization of human podocalyxin-like protein. / Biol Chem 272: 15708–15714Google Scholar
  277. 277.
    Kershaw DB, Thomas PE, Wharram BL, Goyal M, Wiggins JE, Whiteside CI, Wiggins RC (1995) Molecular cloning, expression, and characterization of podocalyxin-like protein 1 from rabbit as a transmembrane protein of glomerular podocytes and vascular endothelium. J Biol Chem 270: 29439–29446PubMedGoogle Scholar
  278. 278.
    Morgan SM, Samulowitz U, Darley L, Simmons DL, Vestweber D (1999) Biochemical characterization and molecular cloning of a novel endothelial-specific sialomucin. Blood 93: 165–175PubMedGoogle Scholar
  279. 279.
    Samulowitz U, Kuhn A, Brachtendorf G, Nawroth R, Braun A, Bankfalvi A, Bocker W, Vestweber D (2002) Human endomucin: Distribution pattern, expression on high endothelial venules, and decoration with the MECA-79 epitope. Am J Pathol 160: 1669–1681PubMedGoogle Scholar
  280. 280.
    Brachtendorf G, Kuhn A, Samulowitz U, Knorr R, Gustafsson E, Potocnik A, Fassler R, Vestweber D (2001) Early expression of endomucin on endothelium of the mouse embryo and on putative hematopoietic clusters in the dorsal aorta. Dev Dyn 222: 410–419PubMedGoogle Scholar
  281. 281.
    Asa D, Raycroft L, Ma L, Aeed PA, Kaytes PS, Elhammer AP, Geng JG (1995) The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P-and E-selectins. J Biol Chem 270: 11662–11672PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Douglas A. Steeber
    • 1
  • Hariharan Subramanian
    • 1
  • Jamison J. Grailer
    • 1
  • Rochelle M. Conway
    • 1
  • Traci J. Storey
    • 1
  1. 1.Department of Biological SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations