Skip to main content

Dynamical Consequences of Strong Entanglement

  • Chapter
Quantum Decoherence

Part of the book series: Progress in Mathematical Physics ((PMP,volume 48))

Abstract

The concept of motion in quantum theory is reviewed from a didactical point of view. A unitary evolution according to a Schrödinger equation has very different properties compared to motion in classical physics. If the phase relations defining unitary dynamics are destroyed or unavailable, motion becomes impossible (Zeno effect). The most important mechanism is dislocalization of phase relations (decoherence), arising from coupling of a quantum system to its environment. Macroscopic systems are not frozen, although strong decoherence is important to derive quasi-classical motion within the quantum framework. These two apparently conflicting consequences of strong decoherence are analyzed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory. 2nd edition (Springer, Berlin 2003).

    Google Scholar 

  2. B. Misra and E.C.G. Sudarshan, Journal of Math. Phys. 18 (1977), 756.

    Article  MathSciNet  Google Scholar 

  3. E. Joos, Phys. Rev. D29 (1984), 1626.

    MathSciNet  Google Scholar 

  4. W.M. Itano, D.J. Heinzen, J.J. Bollinger, and D.J. Wineland, Phys. Rev. A41 (1990), 2295.

    Google Scholar 

  5. A.C. Elitzur and L. Vaidman, Found. Phys. 23 (1993), 987.

    Article  Google Scholar 

  6. C.H. Bennett, Nature 371 (1994), 479.

    Article  Google Scholar 

  7. P.G. Kwiat, A.G. White, J.R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 83 (1999), 4725.

    Article  Google Scholar 

  8. H.D. Zeh, Found. Phys. 1 (1970), 69.

    Article  Google Scholar 

  9. E. Joos and H.D. Zeh, Z. Phys. B59 (1985), 223.

    Article  Google Scholar 

  10. K. Hornberger and E. Sipe, Phys. Rev. A68 (2003), 012105.

    Google Scholar 

  11. L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger and M. Arndt, Nature 427 (2004), 711.

    Article  Google Scholar 

  12. A.O. Caldeira and A.J. Leggett, Physica 121A (1983), 587.

    MathSciNet  Google Scholar 

  13. W.H. Zurek in: Frontiers in Nonequilibirum Statistical Physics, ed. by G.T. Moore and M.T. Sculley (Plenum, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Joos, E. (2006). Dynamical Consequences of Strong Entanglement. In: Duplantier, B., Raimond, JM., Rivasseau, V. (eds) Quantum Decoherence. Progress in Mathematical Physics, vol 48. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7808-0_6

Download citation

Publish with us

Policies and ethics