Advertisement

Roots and Fruits of Decoherence

  • H. Dieter Zeh
Part of the Progress in Mathematical Physics book series (PMP, volume 48)

Abstract

The concept of decoherence is defined, and discussed in a historical context. This is illustrated by some of its essential consequences which may be relevant for the interpretation of quantum theory. Various aspects of the formalism are also reviewed for this purpose.

Keywords

Black Hole Wave Function Quantum State Quantum Theory Bell State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Brune, E. Hagley, J. Dreyer, X. Maître, Y. Moali, C. Wunderlich, J.M. Raimond, and S. Haroche, Phys. Rev. Lett. 77 (1996), 4887.CrossRefADSGoogle Scholar
  2. [2]
    M. Arndt, O. Nairz, J. Vos-Andreae, C. Keler, G. van der Zouw, and A. Zeilinger, Nature 401 (1999), 680.CrossRefADSGoogle Scholar
  3. [3]
    M. Schlosshauer, Rev. Mod. Phys. 76 (2004), 1267; Ann. Phys. (N.Y.), to be published — quant-ph/0506199.CrossRefADSGoogle Scholar
  4. [4]
    G. Bacciagaluppi, http://plato.stanford.edu/entries/qm-decoherence/.Google Scholar
  5. [5]
    H.D. Zeh in: Science and Ultimate Reality, J.D. Barrow, P.C.W. Davies, and C.L. Harper, edts. (Cambridge UP 2004) — quant-ph/0204088.Google Scholar
  6. [6]
    E. Joos and H.D. Zeh, Z. Phys. B59 (1985), 223.CrossRefADSGoogle Scholar
  7. [7]
    E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. (Springer, Berlin 2003).Google Scholar
  8. [8]
    H.D. Zeh, The Physical Basis of the Direction of Time, 4th edn. (Springer, Berlin 2001); see also www.time-direction.de.MATHGoogle Scholar
  9. [9]
    B. d’Espagnat, in: Preludes in theoretical physics, A. De-Shalit, H. Feshbach, and L. van Hove, edts. (North-Holland, Amsterdam 1966).Google Scholar
  10. [10]
    H.D. Zeh, Z. Phys. 202 (1967), 38; see also Chap. 9 of [7].CrossRefADSGoogle Scholar
  11. [11]
    H.D. Zeh, Phys. Lett. A116 (1986), 9; A126 (1988), 311.MathSciNetADSGoogle Scholar
  12. [12]
    W.H. Zurek, Phys. Today 44 (Oct.) (1991), 36.CrossRefGoogle Scholar
  13. [13]
    M. Gell-Mann and J.B. Hartle, Phys. Rev. D47 (1993), 3345.MathSciNetADSGoogle Scholar
  14. [14]
    H.D. Zeh, Found. Phys. 1 (1970), 69.CrossRefADSGoogle Scholar
  15. [15]
    O. Kübler and H.D. Zeh, Ann. Phys. (N.Y.) 76 (1973), 405.CrossRefADSGoogle Scholar
  16. [16]
    E. Schrödinger, Proc. Cambridge Phil. Soc. 31 (1935), 555.CrossRefGoogle Scholar
  17. [17]
    R. Omnès, Phys. Rev. D 71 (2005), 065011 — quant-ph/0411201.Google Scholar
  18. [18]
    O. Ulfbeck and A. Bohr, Found. Phys. 31 (2001), 757.CrossRefMathSciNetGoogle Scholar
  19. [19]
    J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge UP 1987).Google Scholar
  20. [20]
    J.M. Jauch, Foundations of Quantum Mechanics (Addison Wesley, Reading Mass. 1968).MATHGoogle Scholar
  21. [21]
    E. Joos, Phys. Rev. D29 (1984), 1626; see also Chap. 3 of [7].MathSciNetADSGoogle Scholar
  22. [22]
    W.H. Zurek, Phys. Rev. D24 (1981), 1516; dto. D26 (1982), 1862.Google Scholar
  23. [23]
    G. Lüders, Ann. Phys. (Leipzig) 8 (1951), 322.MATHGoogle Scholar
  24. [24]
    N. Graham, The Everett Interpretation of Quantum Mechanics (Univ. North Carolina, Chapel Hill 1970).Google Scholar
  25. [25]
    B. d’Espagnat, edt., Foundations of Quantum Mechanics (49th Enrico Fermi School, Varenna), (Academic Press, New York 1971).Google Scholar
  26. [26]
    J.S. Bell, Physics 1 (1964), 195.Google Scholar
  27. [27]
    A. Peres, Phys. Rev. Lett. 77 (1996), 1413; V. Vedral, M.B. Plenio, M.A. Rippin, and P.L. Knight, Phys. Rev. Lett. 78 (1997), 2275.CrossRefMathSciNetMATHADSGoogle Scholar
  28. [28]
    J.-G. Demers, and C. Kiefer, Phys. Rev. D53 (1996), 7050.MathSciNetADSGoogle Scholar
  29. [29]
    D.N. Page, Phys. Rev. Lett. 44 (1980), 301.CrossRefADSGoogle Scholar
  30. [30]
    H.D. Zeh, Phys. Lett. A 347 (2005), 1 — gr-qc/0507051; C. Kiefer, gr-qc/0508120.Google Scholar
  31. [31]
    E. Joos, Phys. Lett. A116 (1986), 6.MathSciNetADSGoogle Scholar
  32. [32]
    H.D. Zeh, in: Physical Origins of the Asymmetry of Time, J.J. Halliwell, J. Perez-Mercader, and W.H. Zurek, edts. (Cambridge UP 1994).Google Scholar
  33. [33]
    C. Kiefer and H.D. Zeh, Phys. Rev. D51 (1995), 4145; C. Kiefer, Quantum Gravity, (Clarendon Press, Oxford 2004).MathSciNetADSGoogle Scholar
  34. [34]
    E. Schmidt, Math. Annalen 63 (1907), 433.CrossRefGoogle Scholar
  35. [35]
    Ph. Pearle, Int. J. Theor. Phys. 18 (1979), 489.CrossRefMathSciNetMATHGoogle Scholar
  36. [36]
    H.D. Zeh, Found. Phys. 3 (1973), 109 — quant-ph/0306151.CrossRefADSGoogle Scholar
  37. [37]
    W.H. Zurek, S. Habib, and J.P. Paz, Phys. Rev. Lett. 70 (1993), 1187.CrossRefADSGoogle Scholar
  38. [38]
    A.O. Caldeira and A.J. Leggett, Physica 121A (1983), 587.MathSciNetADSGoogle Scholar
  39. [39]
    W.H. Zurek and J.P. Paz, Phys. Rev. Lett. 72 (1994), 2508; Nuovo Cim., 110B (1995), 611.CrossRefADSGoogle Scholar
  40. [40]
    R. Zwanzig, Boulder Lectures in Theoretical Physics 3 (1960), 106.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 2006

Authors and Affiliations

  • H. Dieter Zeh
    • 1
  1. 1.Universität HeidelbergWaldhilsbachGermany

Personalised recommendations