Approaches to Quantum Error Correction

  • Julia Kempe
Part of the Progress in Mathematical Physics book series (PMP, volume 48)


In a ground breaking discovery in 1994, Shor has shown that quantum computers, if built, can factor numbers efficiently. Since then quantum computing has become a burgeoning field of research, attracting theoreticians and experimentalists alike, and regrouping researchers from fields like computer science, physics, mathematics and engineering. Quantum information is very fragile and prone to decoherence. Yet by the middle of 1996 it has been shown that fault-tolerant quantum computation is possible. We give a simple description of the elements of quantum error-correction and quantum fault-tolerance. After characterizing quantum errors we present several error correction schemes and outline the elements of a full fledged fault-tolerant computation, which works error-free even though all of its components can be faulty. We also mention alternative approaches to error-correction, so called error-avoiding or decoherence-free schemes.


Quantum Computation Quantum Error Code Word Quantum Gate Quantum Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AB97]
    D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. In Proceedings of 29th Annual ACM Symposium on Theory of Computing (STOC), page 46, New York, NY, 1997. ACM.Google Scholar
  2. [AGP05]
    P. Aliferis, D. Gottesman, and J. Preskill. Quantum accuracy threshold for concatenated distance-3 codes, 2005. lanl-report quant-ph/0504218.Google Scholar
  3. [AL87]
    R. Alicki and K. Lendi. Quantum Dynamical Semigroups and Applications. Number 286 in Lecture Notes in Physics. Springer-Verlag, Berlin, 1987.MATHCrossRefGoogle Scholar
  4. [ALZ05]
    R. Alicki, D.A. Lidar, and P. Zanardi. Are the assumptions of fault-tolerant quantum error correction internally consistent?, 2005. lanl-report quantph/0506201.Google Scholar
  5. [AvDK+04]
    D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev. Adiabatic quantum computation is equivalent to standard quantum computation. In Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (FOCS), 2004.Google Scholar
  6. [Bac01]
    D. Bacon. Decoherence, control, and symmetry in quantum computers, 2001. Ph.D. thesis, University of California, Berkeley.Google Scholar
  7. [BDSW96]
    C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters. Mixed state entanglement and quantum error correction. Phys. Rev. A, 54:3824, 1996.CrossRefMathSciNetADSGoogle Scholar
  8. [BKLW00]
    D. Bacon, J. Kempe, D.A. Lidar, and K.B. Whaley. Universal fault-tolerant computation on decoherence free subspaces. Phys. Rev. Lett., 85:1758–1761, 2000.CrossRefADSGoogle Scholar
  9. [BLW99]
    D. Bacon, D.A. Lidar, and K.B. Whaley. Robustness of decoherence-free subspaces for quantum computation. Phys. Rev. A, 60:1944, 1999.CrossRefADSGoogle Scholar
  10. [BR01]
    H.J. Briegel and R. Raussendorf. A one-way quantum computer. Phys. Rev. Lett., 86:5188, 2001.CrossRefADSGoogle Scholar
  11. [Car93]
    H. Carmichael. An Open Systems Approach to Quantum Optics. Number m18 in Lecture notes in physics. Springer-Verlag, Berlin, 1993.MATHGoogle Scholar
  12. [CFP02]
    A. Childs, E. Farhi, and J. Preskill. Robustness of adiabatic quantum computation. Phys. Rev. A, 65:012322, 2002.CrossRefADSGoogle Scholar
  13. [CL83]
    A.O Caldeira and A.J. Leggett. Quantum tunneling in a dissipative system. Ann. of Phys., 149(2):374–456, 1983.CrossRefADSGoogle Scholar
  14. [CRSS98]
    A.R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane. Quantum error correction via codes over GF(4). IEEE Trans. Inf. Th., 44:1369, 1998.CrossRefMathSciNetMATHGoogle Scholar
  15. [CS96]
    A.R. Calderbank and P.W. Shor. Good quantum error correcting codes exist. Phys. Rev. A, 54:1098–1105, 1996.CrossRefADSGoogle Scholar
  16. [Dav76]
    E.B. Davies. Quantum theory of open systems. Academic Press, London, 1976.MATHGoogle Scholar
  17. [DBK+00]
    D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley. Universal quantum computation with the exchange interaction. Nature, 408:339, 2000.CrossRefADSGoogle Scholar
  18. [DG98]
    L.-M Duan and G.-C. Guo. Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment. Phys. Rev. A, 57:737, 1998.CrossRefADSGoogle Scholar
  19. [Die82]
    D. Dieks. Communication by electron-paramagnetic-resonance devices. Phys. Lett., 92A:271, 1982.ADSGoogle Scholar
  20. [DiV95]
    D. P. DiVincenzo. Two-bit gates are universal for quantum computation. Phys. Rev. A, 51(2):1015–1022, 1995.CrossRefMathSciNetADSGoogle Scholar
  21. [FGG+01]
    E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, (5516):472–476, 2001.MathSciNetADSCrossRefGoogle Scholar
  22. [FKLW01]
    M.H. Freedman, A. Kitaev, M. Larsen, and Z. Wang. Topological quantum computation. LANL preprint quant-ph/0101025, 2001.Google Scholar
  23. [FKSS04]
    Jesse Fern, Julia Kempe, Slobodan Simic, and Shankar Sastry. Faulttolerant quantum computation-a dynamical systems approach, 2004. quantph/0409084.Google Scholar
  24. [Got97a]
    D. Gottesman. Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A, 54:1862, 1997.CrossRefMathSciNetADSGoogle Scholar
  25. [Got97b]
    D. Gottesman. Stabilizer codes and quantum error correction. PhD thesis, California Institute of Technology, Pasadena, CA, 1997.Google Scholar
  26. [Got97c]
    D. Gottesman. Theory of fault-tolerant quantum computation. Phys. Rev. A, 57:127, 1997.CrossRefADSGoogle Scholar
  27. [Got05]
    D. Gottesman. Quantum error correction and fault-tolerance, 2005.Google Scholar
  28. [Kal05]
    G. Kalai. Thoughts on noise and quantum computation, 2005. lanl-report quant-ph/0508095.Google Scholar
  29. [KBLW01]
    J. Kempe, D. Bacon, D.A. Lidar, and K.B. Whaley. Theory of decoherencefree fault-tolerant universal quantum compuation. Phys. Rev. A, 63:042307, 2001.CrossRefADSGoogle Scholar
  30. [Kem01]
    J. Kempe. Universal Noiseless Computation: Mathematical Theory and Applications. PhD thesis, University of California, Berkeley, 2001.Google Scholar
  31. [Kit97]
    A.Yu. Kitaev. Quantum computations: Algorithms and error corrections. Russian Math. Surveys, 52:1191–1249, 1997.CrossRefMathSciNetMATHGoogle Scholar
  32. [Kit03]
    A.Y. Kitaev. Fault-tolerant quantum computation by anyons. Ann. of Phys., (303):2–30, 2003.CrossRefMathSciNetMATHADSGoogle Scholar
  33. [KL96]
    E. Knill and R. Laflamme. Concatenated quantum codes, 1996. LANL preprint quant-ph/9608012.Google Scholar
  34. [KL97]
    E. Knill and R. Laflamme. Theory of quantum error-correcting codes. Phys. Rev. A, 55:900, 1997.CrossRefMathSciNetADSGoogle Scholar
  35. [KLV00]
    E. Knill, R. Laflamme, and L. Viola. Theory of quantum error correction for general noise. Phys. Rev. Lett., 84:2525, 2000.CrossRefMathSciNetMATHADSGoogle Scholar
  36. [KLZ96]
    E. Knill, R. Laflamme, and W. H. Zurek. Accuracy threshold for quantum computation. Technical report, Quantum Physics e-Print archive, 1996. Scholar
  37. [KLZ98]
    E. Knill, R. Laflamme, and W. Zurek. Resilient quantum computation. Science, 279:342–345, 1998.CrossRefADSGoogle Scholar
  38. [Kni04]
    E. Knill. Fault-tolerant postselected quantum computation: Threshold analysis, 2004.Google Scholar
  39. [Kni05]
    E. Knill. Quantum computing with realistically noisy devices. Nature, 434:39–44, 2005.CrossRefADSGoogle Scholar
  40. [Kra83]
    K. Kraus. States, Effects and Operations. Fundamental Notions of Quantum Theory. Academic, Berlin, 1983.CrossRefGoogle Scholar
  41. [KSV02]
    A.Y. Kitaev, A.H. Shen, and M.N. Vyalyi. Classical and Quantum Computation. Number 47 in Graduate Series in Mathematics. AMS, Providence, RI, 2002.MATHGoogle Scholar
  42. [Lan95]
    R. Landauer. Is quantum mechanics useful? Phil. Tran, Roy. Soc. Lond., 353:367, 1995.MathSciNetADSCrossRefGoogle Scholar
  43. [LBW99]
    D.A. Lidar, D. Bacon, and K.B. Whaley. Concatenating decoherence free subspaces with quantum error correcting codes. Phys. Rev. Lett., 82:4556, 1999.CrossRefADSGoogle Scholar
  44. [LCD+87]
    A.J. Leggett, S. Charkavarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, and W. Zwerger. Dynamics of the dissipative two-state system. Rev. Mod. Phys., 59(1):1–85, 1987.CrossRefADSGoogle Scholar
  45. [LCW98]
    D.A. Lidar, I.L. Chuang, and K.B. Whaley. Decoherence free subspaces for quantum computation. Phys. Rev. Lett., 81:2594, 1998.CrossRefADSGoogle Scholar
  46. [Lin76]
    G. Lindblad. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 48:119, 1976.CrossRefMathSciNetMATHADSGoogle Scholar
  47. [LMPZ96]
    R. Laflamme, C. Miquel, J.P. Paz, and W.H. Zurek. Perfect quantum error correction code. Phys. Rev. Lett., 77:198, 1996.CrossRefADSGoogle Scholar
  48. [LW03]
    D.A. Lidar and K.B. Whaley. Lecture Notes in Physics, volume 622, chapter Decoherence-Free Subspaces and Subsystems, pages 83–120. Sringer, Berlin, 2003.Google Scholar
  49. [NC00]
    M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK, 2000.MATHGoogle Scholar
  50. [ND05]
    M.A. Nielsen and C.M. Dawson. Fault-tolerant quantum computation with cluster states. Phys. Rev. A, 71:042323, 2005.CrossRefADSGoogle Scholar
  51. [Neu56]
    J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. In Automata Studies, pages 329–378, Princeton, NJ, 1956. Princeton University Press.Google Scholar
  52. [Pre98a]
    J. Preskill. Quantum information and computation, lecture notes., 1998.Google Scholar
  53. [Pre98b]
    J. Preskill. Reliable quantum computers. Proc. R. Soc. A, 454:385–410, 1998.CrossRefMathSciNetMATHADSGoogle Scholar
  54. [Pre99]
    J. Preskill. Fault-tolerant quantum computation. In T.P. Spiller H.K. Lo, S. Popescu, editor, Introduction to quantum computation, page 213, Singapore, 1999. World Scientific.Google Scholar
  55. [PSE96]
    G. Palma, K. Suominen, and A. Ekert. Quantum computers and dissipation. Proc. Roy. Soc. London Ser. A, 452:567, 1996.MathSciNetMATHADSCrossRefGoogle Scholar
  56. [Rei05]
    B. Reichardt. Threshold for the distance three steane quantum code, 2005. lanl-report quant-ph/0509203.Google Scholar
  57. [SBFH05]
    S. H. Simon, N.E. Bonesteel, M.H. Freedman, and N. Petrovicand L. Hormozi. Topological quantum computing with only one mobile quasiparticle, 2005. lanl-archive quant-ph/0509175.Google Scholar
  58. [Sho94]
    P.W. Shor. Algorithms for quantum computation: Discrete log and factoring. In Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, pages 124–134, Los Alamitos, CA, 1994. IEEE Computer Society.Google Scholar
  59. [Sho95]
    P.W. Shor. Scheme for reducing decoherence in quantum memory. Phys. Rev. A, 52:2493–2496, 1995.CrossRefADSGoogle Scholar
  60. [Sho96]
    P.W. Shor. Fault-tolerant quantum computation. In Proceedings of the 37th Symposium on Foundations of Computing, pages 56–65, Los Alamitos, CA, 1996. IEEE Computer Society Press.Google Scholar
  61. [Ste96a]
    A. Steane. Multiple particle interference and quantum error correction. Proc. Roy. Soc. London, 452:2551–2577, 1996.MathSciNetCrossRefMATHADSGoogle Scholar
  62. [Ste96b]
    A.M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett., 77:793, 1996.CrossRefMathSciNetMATHADSGoogle Scholar
  63. [Ste97]
    A.M. Steane. Active stabilisation, quantum computation and quantum state synthesis. Phys. Rev. Lett., 78:2252–2255, 1997.CrossRefADSGoogle Scholar
  64. [Ste99]
    A.M. Steane. Quantum error correction. In S. Popescu H.K. Lo and T.P. Spiller, editors, Introduction to Quantum Computation and Information, page 184. World Scientific, Singapore, 1999.Google Scholar
  65. [Ste01]
    A.M. Steane. Decoherence and its implications in quantum computation and information transfer, chapter Quantum Computing and Error Correction, pages 284–298. IOS Press, Amsterdam, 2001.Google Scholar
  66. [Ste03]
    A.M. Steane. Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A, 68:042322, 2003.CrossRefADSGoogle Scholar
  67. [TB05]
    B. M. Terhal and G. Burkard. Fault-tolerant quantum computation for local non-markovian noise. Phys. Rev. A, 71:012336, 2005.CrossRefADSGoogle Scholar
  68. [Unr95]
    W.G. Unruh. Maintaining coherence in quantum computers. Phys. Rev. A, 51:992–997, 1995.CrossRefMathSciNetADSGoogle Scholar
  69. [VKL99]
    L. Viola, E. Knill, and S. Lloyd. Dynamical decoupling of open quantum systems. Phys. Rev. Lett., 82:2417, 1999.CrossRefMathSciNetMATHADSGoogle Scholar
  70. [WZ82]
    W. Wootters and W. Zurek. A single quantum cannot be cloned. Nature, 299:802, 1982.CrossRefADSGoogle Scholar
  71. [Zan97]
    P. Zanardi. Dissipative dynamics in a quantum register. Phys. Rev. A, 56:4445, 1997.CrossRefADSGoogle Scholar
  72. [Zan98]
    P. Zanardi. Dissipation and decoherence in a quantum register. Phys. Rev. A, 57:3276, 1998.CrossRefADSGoogle Scholar
  73. [ZR97]
    P. Zanardi and M. Rasetti. Error avoiding quantum codes. Mod. Phys. Lett. B, 11:1085, 1997.CrossRefMathSciNetADSGoogle Scholar
  74. [Zur91]
    W.H. Zurek. Decoherence and the transition from quantum to classical. Phys. Today, Oktober:36–44, 1991.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 2006

Authors and Affiliations

  • Julia Kempe
    • 1
  1. 1.CNRS & LRI Laboratoire de Recherche InformatiqueOrsay CedexFrance

Personalised recommendations