Decoherence and the Transition from Quantum to Classical — Revisited

  • Wojciech Hubert Zurek
Part of the Progress in Mathematical Physics book series (PMP, volume 48)


The environment surrounding a quantum system can, in effect, monitor some of the systems observables. As a result, the eigenstates of these observables continuously decohere and can behave like classical states.


Density Matrix Quantum Theory Quantum Discord Wigner Function Reduce Density Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. [1]
    A. Albrecht, Investigating Decoherence in a Simple System, Phys. Rev. D 46(12), 5504 (1992).CrossRefADSGoogle Scholar
  2. [2]
    J. R. Anglin and W. H. Zurek, Decoherence of Quantum Fields: Pointer States and Predictability, Phys. Rev. D 53(12), 7327 (1996).CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    J. R. Anglin, J. P. Paz and W. H. Zurek, Deconstructing Decoherence, Phys. Rev. A 55(6), 4041 (1997).CrossRefADSGoogle Scholar
  4. [4]
    M. Arndt, O. Nairz, J. VosAndreae, C. Keller, G. van der Zouw, A. Zeilinger, Wave-Particle Duality of C-60 Molecules, Nature 401(6754), 680 (1999).CrossRefADSGoogle Scholar
  5. [5]
    A. Aspect, J. Dalibard and G. Roger, Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers, Phys. Rev. Lett. 49, 1804 (1982).CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    A. Aspect, P. Grangier and G. Rogier, Experimental Tests of Realistic Local Theories via Bell’s Theorem, Phys. Rev. Lett. 47, 460 (1981).CrossRefADSGoogle Scholar
  7. [7]
    J. S. Bell, On the Einstein Podolsky Rosen Paradox, Physics 1, 195 (1964).Google Scholar
  8. [8]
    D. Bohm, In Quantum Theory, Chap. 22, p. 611. Englewood Cliffs, NJ: Prentice Hall, 1951.Google Scholar
  9. [9]
    N. Bohr, The Quantum Postulate and Recent Development of Atomic Theory, Nature 121, 580 (1928). Reprinted in Quantum Theory and Measurement. Edited by Wheeler, J. A., and W. H. Zurek. Princeton, NJ: Princeton University Press.MATHADSCrossRefGoogle Scholar
  10. [10]
    V.B. Braginsky, Y. I. Vorontsov and K. S. Thorne, Quantum Nondemolition Measurements, Science 209, 547 (1980).CrossRefADSGoogle Scholar
  11. [11]
    M. Brune, E. Hagley, J. Dreyer, X. Maitre, C. Wunderlich, J. M. Raimond and S. Haroche, Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement, Phys. Rev. Lett. 77, 4887 (1996).CrossRefADSGoogle Scholar
  12. [12]
    A. O. Caldeira, and A. J. Leggett, Path Integral Approach to Quantum Brownian Motion, Physica A 121, 587 (1983a).CrossRefMathSciNetMATHADSGoogle Scholar
  13. [13]
    —, Quantum Tunneling in a Dissipative System, Ann. Phys (N. Y.) 149(2), 374 (1983b).CrossRefADSGoogle Scholar
  14. [14]
    —, Influence of Damping on Quantum Interference: An Exactly Soluble Model, Phys. Rev. A 31, 1059 (1985).CrossRefADSGoogle Scholar
  15. [15]
    H. J. Carmichael, An Open Systems Approach to Quantum Optics, Berlin, Springer Verlag, 1993.MATHGoogle Scholar
  16. [16]
    C. M. Caves, K. S. Thorne, R. W. P. Drewer, V. D. Sandberg and M. Zimmerman, On the Measurement of a Weak Classical Force Coupled to a Quantum-Mechanical Oscillator, 1. Issues of Principle. Rev. Mod. Phys. 52, 341 (1980).CrossRefADSGoogle Scholar
  17. [17]
    M. S. Chapman, T. D. Hammond, A. Lenef, J. Schmiedmayer, R. A. Rubenstein, E. Smith and D. E. Pritchard, Photon Scattering from Atoms in an Atom Interferometer, Phys. Rev. Lett. 75(21), 3783 (1995).CrossRefADSGoogle Scholar
  18. [18]
    C. C. Cheng and M. G. Raymer, Long-Range Saturation of Spatial Decoherence in Wave-Field Transport in Random Multiple-Scattering Media, Phys. Rev. Lett. 82 (24), 4807 (1999).CrossRefADSGoogle Scholar
  19. [19]
    D. A. R. Dalvit, J. Dziarmaga, W. H. Zurek, Unconditional Pointer States from Conditional Master Equations, Phys. Rev. Lett. 86(3), 373 (2001).CrossRefADSGoogle Scholar
  20. [20]
    H. Dekker, Classical and Quantum Mechanics of the Damped Harmonic Oscillator, Phys. Rep. 80, 1 (1981).CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    B. S. DeWitt, Quantum Mechanics and Reality, Phys. Today 23, 30 (1970).CrossRefGoogle Scholar
  22. [22]
    B. S. DeWitt and N. Graham, eds., The Many-Worlds Interpretation of Quantum Mechanics. Princeton: Princeton University Press, 1973.Google Scholar
  23. [23]
    A. Einstein, B. Podolsky and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47, 777 (1935).CrossRefMATHADSGoogle Scholar
  24. [24]
    H. Everett III, “Relative State” Formulation of Quantum Mechanics, Rev. Mod. Phys. 29, 454 (1957).CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    R. P. Feynman and F. L.Vernon, The Theory of a General Quantum System Interacting with a Linear Dissipative System, Ann. Phys. 24, 118 (1963).CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo and J. E. Lukens, Quantum Superposition of Distinct Macroscopic States, Nature 406(6791), 43 (2000).CrossRefADSGoogle Scholar
  27. [27]
    C. A. Fuchs and A. Peres, Quantum Theory Needs No “Interpretation”, Phys. Today 53(3), 70 (2000).CrossRefGoogle Scholar
  28. [28]
    M. R. Gallis, Emergence of Classicality via Decoherence Described by Lindblad Operators, Phys. Rev. A 53(2), 655 (1996).CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    M. Gell-Mann and J. B. Hartle, Quantum Mechanics in the Light of Quantum Cosmology, In Complexity, Entropy, and the Physics of Information. p. 425. Edited by W. H. Zurek. Redwood City: Addison-Wesley, 1990.Google Scholar
  30. [30]
    R. B. Griffiths, Consistent Histories and the Interpretation of Quantum Mechanics, J. Stat. Phys. 36, 219 (1984).CrossRefMATHADSGoogle Scholar
  31. [31]
    F. Haake and D. F. Walls, In Quantum Optics IV. Edited by J. D. Harvey, and D. F. Walls. Berlin: Springer Verlag, 1986.Google Scholar
  32. [32]
    S. Habib, K. Shizume and W. H. Zurek, Decoherence, Chaos, and the Correspondence Principle, Phys. Rev. Lett. 80(20), 4361 (1998).CrossRefMathSciNetMATHADSGoogle Scholar
  33. [33]
    S. Haroche, Entanglement, Mesoscopic Superpositions and Decoherence Studies with Atoms and Photons in a Cavity, Physica Scripta T76, 159 (1998).CrossRefADSGoogle Scholar
  34. [34]
    J. B. Hartle, The Quantum Mechanics of Cosmology. In Quantum Cosmology and Baby Universes, Proceedings of the 1989 Jerusalem Winter School. Edited by S. Coleman, J. B. Hartle, T. Piran, and S. Weinberg. Singapore: World Scientific, 1991.Google Scholar
  35. [35]
    B. L. Hu, J. P. Paz and Y. Zhang, Quantum Brownian Motion in a General Environment: Exact Master Equation with Nonlocal Dissipation and Colored Noise, Phys. Rev. D 45, 2843 (1992).CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    E. Joos and H. D. Zeh, The Emergence of Classical Properties Through Interaction with the Environment. Z., Phys. B 59 223 (1985).CrossRefADSGoogle Scholar
  37. [37]
    Z. P. Karkuszewski, J. Zakrzewski and W. H. Zurek, Breakdown of Correspondence in Chaotic Systems: Ehrenfest Versus Localization Times, Phys. Rev. A 65(4), 042113 (2002).CrossRefADSGoogle Scholar
  38. [38]
    D. A. Kokorowski, A. D. Cronin, T. D. Roberts and D. E. Pritchard, From Single-to Multiple-Photon Decoherence in an Atom Interferometer, Phys. Rev. Lett. 86(11), 2191 (2001).CrossRefADSGoogle Scholar
  39. [39]
    R. Landauer, Information is Physical, Phys. Today 44(5), 23 (1991).ADSCrossRefGoogle Scholar
  40. [40]
    A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger, Dynamics of the Dissipative System, Rev. Mod. Phys. 59, 1 (1987).CrossRefADSGoogle Scholar
  41. [41]
    G. J. Milburn and C. A. Holmes, Dissipative Quantum and Classical Liouville Mechanics of the Unharmonic Oscillator, Phys. Rev. Lett. 56, 2237 (1986).CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    P. A. Miller and S. Sarkar, Signatures of Chaos in the Entanglement of Two Coupled Quantum Kicked Tops, Phys. Rev. E 60, 1542 (1999).CrossRefADSGoogle Scholar
  43. [43]
    C. Monroe, D. M. Meekhof, B. E. King and D. J. Wineland, A “Schrödinger Cat” Superposition State of an Atom, Science 272(5265), 1131 (1996).CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    D. Monteoliva and J. P. Paz, Decoherence and the Rate of Entropy Production in Chaotic Quantum Systems, Phys. Rev. Lett. 85(16), 3373 (2000).CrossRefADSGoogle Scholar
  45. [45]
    J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal and S. Lloyd, Josephson Persistent-Current Qubit, Science 285(5430), 1036 (1999).CrossRefGoogle Scholar
  46. [46]
    C. J.Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W. M. Itano, et al, Decoherence of Quantum Superpositions Through Coupling to Engineered Reservoirs, Nature 403, 269 (2000).CrossRefADSGoogle Scholar
  47. [47]
    H. Ollivier and W. H. Zurek, Quantum Discord: A Measure of the Quantumness of Correlations, Phys. Rev. Lett. 88(1), 017901 (2002).CrossRefADSGoogle Scholar
  48. [48]
    R. Omnés, From Hilbert Space to Common Sense, Ann. Phys. 201, 354 (1990).CrossRefADSGoogle Scholar
  49. [49]
    —, Consistent Interpretation of Quantum Mechanics, Rev. Mod. Phys 64, 339 (1992).CrossRefADSGoogle Scholar
  50. [50]
    A. K. Pattanayak, Lyapunov Exponents Entropy Production and Decoherence, Phys. Rev. Lett. 83(22), 4526 (1999).CrossRefADSGoogle Scholar
  51. [51]
    J. P. Paz and W. H. Zurek, Environment-Induced Decoherence, Classicality, and Consistency of Quantum Histories, Phys. Rev. D 48(6), 2728 (1993).CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    —, Quantum Limit of Decoherence: Environment Induced Superselection of Energy Eigenstates, Phys. Rev. Lett. 82(26), 5181 (1999).CrossRefADSGoogle Scholar
  53. [53]
    —, In Coherent Atomic Matter Waves, Les Houches Lectures, Edited by R. Kaiser, C. Westbrook, and F. Davids. Vol. 72, p. 533. Berlin: Springer, 2001.CrossRefGoogle Scholar
  54. [54]
    J. P. Paz, S. Habib and W. H. Zurek, Reduction of the Wave Packet: Preferred Observable and Decoherence Time Scale, Phys. Rev. D 47, 488 (1993).CrossRefADSGoogle Scholar
  55. [55]
    T. Pfau, S. Splater, Ch. Kurtsiefer, C. R. Ekstrom and J. Mlynek, Loss of Spatial Coherence by a Single Spontaneous Emission, Phys. Rev. Lett. 73(9), 1223 (1994).CrossRefADSGoogle Scholar
  56. [56]
    M. O. Scully, B. G. Englert and J. Schwinger, Spin Coherence and Humpty-Dumpty. III. The Effects of Observation, Phys. Rev. A 40, 1775 (1989).CrossRefADSGoogle Scholar
  57. [57]
    M. C. Teich and B. E. A. Saleh, Squeezed and Antibunched Light, Phys. Today 43(6), 26 (1990).CrossRefGoogle Scholar
  58. [58]
    C. D. Tesche, Schrödinger’s Cat: A Realization in Superconducting Devices, Ann. N. Y. Acad. Sci. 480, 36 (1986).ADSCrossRefGoogle Scholar
  59. [59]
    Q. A. Turchette, C. J. Myatt, B. E. King, C. A. Sackett, D. Kielpinski, W. M. Itano, et al, Decoherence and Decay of Motional Quantum States of a Trapped Atom Coupled to Engineered Reservoirs, Phys. Rev. A 62, 053807 (2000).CrossRefADSGoogle Scholar
  60. [60]
    W. G. Unruh and W. H. Zurek, Reduction of a Wave Packet in Quantum Brownian Motion, Phys. Rev. D. 40, 1071 (1989).CrossRefMathSciNetADSGoogle Scholar
  61. [61]
    J. Von Neumann, Mathematische Grundlagen der Quanten Mechanik. Berlin: Springer-Verlag, English translation by R. T. Beyer. 1955. Mathematical Foundations of Quantum Mechanics. Princeton: Princeton University Press, 1932.Google Scholar
  62. [62]
    J. A. Wheeler, Assessment of Everett’s “Relative State” Formulation of Quantum Theory, Rev. Mod. Phys. 29, 463 (1957).CrossRefMathSciNetADSGoogle Scholar
  63. [63]
    —, Information, Physics, Quantum: The Search for Links, In Complexity, Entropy, and the Physics of Information. p. 3. Edited by W. H. Zurek. Redwood City: Addison-Wesley, 1991.Google Scholar
  64. [64]
    J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement, Princeton: Princeton University Press, 1983.Google Scholar
  65. [65]
    E. P. Wigner, On the Quantum Correction for Thermodynamic Equilibrium, Phys. Rev. 40, 749 (1932).CrossRefMATHADSGoogle Scholar
  66. [66]
    —, Remarks on the Mind-Body Question, In The Scientist Speculates, p. 284. Edited by I. J. Good. London: Heineman, 1961.Google Scholar
  67. [67]
    —, The Problem of Measurement, Am. J. Phys. 3, 615 (1963).MathSciNetGoogle Scholar
  68. [68]
    —, In Quantum Optics, Experimental Gravitation, and the Measurement Theory, Edited by P. Meystre, and M. O. Scully. p. 43. New York: Plenum Press, 1983.Google Scholar
  69. [69]
    H. D. Zeh, On the Interpretation of Measurement in Quantum Theory, Found. Phys. 1, 69 (1970).CrossRefADSGoogle Scholar
  70. [70]
    W. H. Zurek, Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse?, Phys. Rev. D 24, 1516 (1981).CrossRefMathSciNetADSGoogle Scholar
  71. [71]
    —, Environment-Induced Superselection Rules, Phys. Rev. D 26, 1862 (1982).CrossRefMathSciNetADSGoogle Scholar
  72. [72]
    —, Reduction of the Wave Packet: How Long Does It Take? In Frontiers of Nonequilibrium Statistical Physics, Edited by P. Meystre, and M. O. Scully. New York: Plenum, 1984.Google Scholar
  73. [73]
    —, Decoherence and the Transition From Quantum to Classical, Phys. Today 44(10), 36 (1991).CrossRefGoogle Scholar
  74. [74]
    —, Preferred States, Predictability, Classicality, and the Environment-Induced Decoherence, Prog. Theor. Phys. 89(2), 281 (1993).CrossRefMathSciNetADSGoogle Scholar
  75. [75]
    —, Decoherence, Chaos, Quantum-Classical Correspondence, and the Algorithmic Arrow of Time, Physica Scripta T76, 186 (1998).CrossRefMathSciNetADSGoogle Scholar
  76. [76]
    —, Einselection and Decoherence from an Information Theory Perspective, Ann. Phys. (Leipzig) 9(11–12), 855 (2000).CrossRefMathSciNetGoogle Scholar
  77. [77]
    —, Decoherence, Einselection, and the Quantum Origins of the Classical, (2001a), quant-ph/0105127.Google Scholar
  78. [78]
    —, Sub-Planck Structure in Phase Space and its Relevance for Quantum Decoherence, Nature 412, 712 (2001b).CrossRefADSGoogle Scholar
  79. [79]
    W. H. Zurek and J. P. Paz, Decoherence, Chaos, and the Second Law, Phys. Rev. Lett. 72(16), 2508 (1994).CrossRefADSGoogle Scholar
  80. [80]
    —, Quantum Chaos: A Decoherent Definition, Physica D 83(1–3), 300 (1995).CrossRefMATHGoogle Scholar
  81. [81]
    W. H. Zurek, S. Habib and J. P. Paz, Coherent States via Decoherence, Phys. Rev. Lett. 70(9), 1187 (1993).CrossRefADSGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 2006

Authors and Affiliations

  • Wojciech Hubert Zurek
    • 1
  1. 1.Theory DivisionLANLLos AlamosUSA

Personalised recommendations