Skip to main content

Numerical Techniques for Multiphase Flow with Liquid-Solid Interaction

  • Chapter
Hemodynamical Flows

Part of the book series: Oberwolfach Seminars ((OWS,volume 37))

Abstract

In many fluid applications, particularly in multiphase flow problems with liquidsolid interaction based on the incompressible Navier-Stokes equations, the mathematical description and the numerical schemes have to be designed in such a way that quite complicated constitutive relations and interactions between fluid and solids can be incorporated into existing flow solvers in an accurate and robust manner. In the following sections, first of all we describe finite-element discretization strategies and corresponding solver techniques (approximate Newton methods, multilevel pressure Schur complement techniques, operator-splitting approaches) for the resulting discrete systems of equations. The need for the development of robust and efficient iterative solvers for implicit high-resolution discretization schemes is emphasized and the numerical treatment of extensions of the NavierStokes equations (Boussinesq approximation, Κ-ε turbulence model) is addressed which is evaluated by simulation results for prototypical applications including multiphase and granular flows. In the second part, a fully monolithic finite-element approach is described for fluid-structure interactions with elastic materials which is applied to several benchmark configurations. In the third part, the concept of FEM fictitious-boundary techniques, together with operator-splitting approaches for particulate flow, is introduced which allows the efficient simulation of systems with many solid particles of different shape and size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.S. Almeida and R.L. Spilker, Finite-element formulations for hyperelastic transversely isotropic biphasic soft tissues, Comp. Meth. Appl. Mech. Engng. 151 (1998), 513–538.

    Article  MATH  Google Scholar 

  2. R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst, Templates for the solution of linear systems: Building blocks for iterative methods, SIAM, Philadelphia, PA, second edition, 1994.

    Google Scholar 

  3. S. Becker, A. Sokolichin and G. Eigenberger, Gas-liquid flow in bubble columns and loop reactors: Part II. Chem. Eng. Sci. 49 (1994), 5747–5762.

    Article  Google Scholar 

  4. M.J. Berger and P. Collela, Local Adaptive Mesh Refinement for Shock Hydrodynamics, J. Comput. Phy. 82 (1989), 64–84.

    Article  MATH  Google Scholar 

  5. P.B. Bochev, G. Liao and G.C. de la Pena, Analysis and Computation of Adaptive Moving Grids by Deformation, Numerical Methods for Partial Differential Equations 12 (1996), 489.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.P. Boris, F.F. Grinstein, E.S. Oran and R.J. Kolbe, New insights into Large Eddy Simulation, Fluid Dynamics Research 10no. 4–6 (1992), 199–227.

    Article  Google Scholar 

  7. R. Bramley and X. Wang, SPLIB: A library of iterative methods for sparse linear systems, Department of Computer Science, Indiana University, Bloomington, IN, 1997. http://www.cs.indiana.edu/ftp/bramley/splib.tar.gz.

    Google Scholar 

  8. S. Brenner, Korn’s inequalities for piecewise H1 vector fields, Math. Comp. 73 (2004), 1067–1087.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comp. Meth. Mech. Eng. 193 (2004), 1437–145.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Burman and P. Hansbo, A stabilized non-conforming finite-element method for incompressible flow, Comp. Meth. Mech. Eng. 195no. 23–24 (2006), 2881–2899.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Burman and P. Hansbo, Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem, Num. Meth. for Part. Diff. Equ. 21no. 5 (2005), 986–997.

    Article  MathSciNet  MATH  Google Scholar 

  12. X.X. Cai, D. Fleitas, B. Jiang and G. Liao, Adaptive Grid Generation Based on Least-Squares Finite-Element Method, Computers and Mathematics with Applications 48no. 7–-8 (2004), 1077–1086.

    Article  MathSciNet  MATH  Google Scholar 

  13. H.D. Ceniceros and T.Y. Hou, An Efficient Dynamically Adaptive Mesh for Potentially Singular Solutions, J. Comput. Phy. 172 (2001), 609–639.

    Article  MATH  Google Scholar 

  14. A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968), 745–762.

    Article  MathSciNet  MATH  Google Scholar 

  15. M.A. Christon, P.M. Gresho and S.B. Sutton, Computational predictability of natural convection flows in enclosures. In: K.J. Bathe (ed), Proc. First MIT Conference on Computational Fluid and Solid Mechanics, Elsevier, 2001, 1465–1468.

    Google Scholar 

  16. R. Codina and O. Soto, Finite-element implementation of two-equation and algebraic stress turbulence models for steady incompressible flows. Int. J. Numer. Methods Fluids 30no. 3 (1999), 309–333.

    Article  MATH  Google Scholar 

  17. K.D. Costa, P.J. Hunter, J.M. Rogers, J.M. Guccione, L.K. Waldman and A.D. McCulloch, A three-dimensional finite-element method for large elastic deformations of ventricular myocardum: I-Cylindrical and spherical polar coordinates, Trans. ASME J. Biomech. Eng. 118no. 4 (1996), 452–463.

    Article  Google Scholar 

  18. K.D. Costa, P.J. Hunter, J.S. Wayne, L.K. Waldman, J.M. Guccione and A.D. McCulloch, A three-dimensional finite-element method for large elastic deformations of ventricular myocardum: II-Prolate spheroidal coordinates, Trans. ASME J. Biomech. Eng. 118no. 4 (1996), 464–472.

    Article  Google Scholar 

  19. M. Crouzeix and P.A. Raviart, Conforming and non-conforming finite-element methods for solving the stationary Stokes equations, R.A.I.R.O. R-3 (1973), 77–104.

    Google Scholar 

  20. B. Dacorogna and J. Moser, On a Partial Differential Equation Involving the Jacobian Determinant, Annales de le Institut Henri Poincaré 7 (1990), 1–26.

    MathSciNet  MATH  Google Scholar 

  21. F. Dai and K.R. Rajagopal, Diffusion of fluids through transversely isotropic solids, Acta Mechanica 82 (1990), 61–98.

    Article  MATH  Google Scholar 

  22. T.A. Davis and I.S. Duff, A combined unifrontal/multifrontal method for unsymmetric sparse matrices, ACM Trans. Math. Software 25no. 1 (1999), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Donea, S. Giuliani, H. Laval and L. Quartapelle, Finite-element solution of the unsteady Navier-Stokes equations by a fractional step method. Comput. Meth. Appl. Mech. Engrg. 30 (1982), 53–73.

    Article  MATH  Google Scholar 

  24. P.S. Donzelli, R.L. Spilker, P.L. Baehmann, Q. Niu and M.S. Shephard, Automated adaptive analysis of the biphasic equations for soft tissue mechanics using a posteriori error indicators, Int. J. Numer. Meth. Engng. 34no. 3 (1992), 1015–1033.

    Article  MathSciNet  MATH  Google Scholar 

  25. H.C. Elman, Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM J. Sci. Comput. 20 (1999), 1299–1316.

    Article  MathSciNet  MATH  Google Scholar 

  26. H.C. Elman, V.E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block preconditioners based on approximate commutators, SIAM J. Sci. Comput. 27 (2005), 1651–1668.

    Article  MathSciNet  Google Scholar 

  27. H.C. Elman, D.J. Silvester and A.J. Wathen, Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math. 90 (2002), 665–688.

    Article  MathSciNet  MATH  Google Scholar 

  28. M.S. Engelman, V. Haroutunian and I. Hasbani, Segregated finite-element algorithms for the numerical solution of large-scale incompressible flow problems. Int. J. Numer. Meth. Fluids 17 (1993), 323–348.

    Article  MATH  Google Scholar 

  29. M.S. Engelman, R.L. Sani and P.M. Gresho, The implementation of normal and/or tangential boundary conditions in finite-element codes for incompressible fluid flow. Int. J. Numer. Meth. Fluids 2 (1982), 225–238.

    Article  MathSciNet  MATH  Google Scholar 

  30. C. Farhat, M. Lesoinne and N. Maman, Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution, Int. J. Numer. Methods Fluids 21no. 10 (1995), 807–835. Finite-element methods in large-scale computational fluid dynamics, Tokyo, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  31. J.H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, 1996.

    Google Scholar 

  32. C. Fleischer, Detaillierte Modellierung von Gas-Flüssigkeits-Reaktoren. Fortschr.Ber. VDI-Reihe 3, Nr. 691, Düsseldorf: VDI Verlag, 2001.

    Google Scholar 

  33. Y.C. Fung, Biomechanics: Mechanical properties of living tissues, Springer-Verlag, New York, NY, 2nd edition, 1993.

    Google Scholar 

  34. M. Garbey, Yu. Kuznetsov and Yu. Vassilevski, Parallel Schwarz method for a convection-diffusion problem, SIAM J. Sci. Comp. 22 (2000), 891–916.

    Article  MathSciNet  MATH  Google Scholar 

  35. V. Girault and P.A. Raviart, Finite-Element Methods for Navier-Stokes Equations, Springer Verlag, Berlin-Heidelberg, 1986.

    MATH  Google Scholar 

  36. R. Glowinski, Finite-Element Methods for Incompressible Viscous Flow, In: Handbook of Numerical Analysis, Vol. IX, P.G. Ciarlet and J.L. Lions (eds), North-Holland, Amsterdam, 701–769, 2003.

    Google Scholar 

  37. R. Glowinski, T.W. Pan, T.I. Hesla and D.D. Joseph, A Distributed Lagrange Multiplier/Fictitious-Domain Method for Particulate Flows, Int. J. Multiphase Flow 25 (1999), 755–794.

    Article  MATH  Google Scholar 

  38. R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph and J. Periaux, A Fictitious-Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow, J. Comput. Phys. 169 (2001), 363–426.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Grajewski, M. Köster, S. Kilian and S. Turek, Numerical Analysis and Practical Aspects of a Robust and Efficient Grid Deformation Method in the Finite-Element Context, Submitted to SISC (2006).

    Google Scholar 

  40. P.M. Gresho, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite-element method that also introduces a nearly consistent mass matrix, Part 1: Theory, Part 2: Implementation. Int. J. Numer. Meth. Fluids 11 (1990), 587–659.

    Article  MathSciNet  MATH  Google Scholar 

  41. P.M. Gresho, M.S. Engelman and R.L. Sani, Incompressible Flow and the Finite-Element Method: Advection-Diffusion and Isothermal Laminar Flow. Wiley, 1998.

    Google Scholar 

  42. F.F. Grinstein and C. Fureby, On Monotonically Integrated Large Eddy Simulation of turbulent flows based on FCT algorithms. In this volume.

    Google Scholar 

  43. M.E. Gurtin, Topics in Finite Elasticity, SIAM, Philadelphia, PA, 1981.

    Google Scholar 

  44. P. Hansbo and M.G. Larson, A simple non-conforming bilinear element for the elasticity problem, Chalmers Finite-Element Center, 2001, Chalmers University of Technology, Göteborg Sweden, h1750-P, Preprint, 2001-01, ISSN 1404-4382.

    Google Scholar 

  45. P. Haupt, Continuum Mechanics and Theory of Materials, Springer, Berlin, 2000.

    MATH  Google Scholar 

  46. M. Heil, Stokes flow in collapsible tubes: Computation and experiment. J. Fluid Mech., 353:285–312, 1997.

    Article  MATH  Google Scholar 

  47. M. Heil, Stokes flow in an elastic tube-a large-displacement fluid-structure interaction problem, Int. J. Num. Meth. Fluids 28no. 2 (1998), 243–265.

    Article  MATH  Google Scholar 

  48. C.W. Hirt et al., An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 135 (1997), 203.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Hron, Numerical simulation of visco-elastic fluids. Contribution to: WDS’97, Freiburg, 1997.

    Google Scholar 

  50. J. Hron, J. Málek, J. Nečas and K.R. Rajagopal, Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure-and shear-dependent viscosities, Mathematics and Computers in Simulation 61 (2003), 297–315.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Hron and S. Turek, A monolithic FEM/multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics, In: H.-J. Bungartz and M. Schäfer (eds), Fluid-Structure Interaction: Modelling, Simulation, Optimisation, LNCSE, Springer, 2006.

    Google Scholar 

  52. H.H. Hu, D.D. Joseph and M.J. Crochet, Direct Simulation of Fluid Particle Motions, Theor. Comp. Fluid Dyn. 3 (1992), 285–306.

    Article  MATH  Google Scholar 

  53. H.H. Hu, N.A. Patankar and M.Y. Zhu, Direct Numerical Simulations of Fluid-Solid Systems Using the Arbitrary Lagrangian-Eulerian Techniques, J. Comput. Phys. 169 (2001), 427–462.

    Article  MathSciNet  MATH  Google Scholar 

  54. W. Huang, Practical Aspects of Formulation and Solution of Moving-Mesh Partial Differential Equations, J. Comput. Phy. 171 (2001), 753–775.

    Article  MATH  Google Scholar 

  55. T.J.R. Hughes and A.N. Brooks, A multidimensional upwind scheme with no crosswind diffusion. Finite-element methods for convection-dominated flows, 1979, New York, ASME, 1979.

    Google Scholar 

  56. T.J.R. Hughes, L.P. Franca and M. Balestra, A new finite-element formulation for computational fluid mechanics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation. Comp. Meth. Appl. Mech. Engrg. 59 (1986), 85–99.

    Article  MathSciNet  MATH  Google Scholar 

  57. J.D. Humphrey, R.K. Strumpf and F.C.P. Yin, Determination of a constitutive relation for passive myocardium: I. A new functional form, J. Biomech. Engng. 112no. 3 (1990), 333–339.

    Article  Google Scholar 

  58. J.D. Humphrey, R.K. Strumpf and F.C.P. Yin. Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. of Biomech. Engng. 112no. 3 (1990), 340–346.

    Article  Google Scholar 

  59. V. John, Higher-order finite-element methods and multigrid solvers in a benchmark problem for the 3D Navier-Stokes equations. Int. J. Numer. Meth. Fluids 40 (2002), 775–798.

    Article  MATH  Google Scholar 

  60. V. John, J.M. Maubach and L. Tobiska, Non-conforming streamline-diffusion-finite-element-method for convection-diffusion problems, Numer. Math. 78 (1997), 165–188.

    Article  MathSciNet  MATH  Google Scholar 

  61. C. Johnson, Numerical solution of partial differential equations by the finite-element method, Cambridge, Cambridge University Press, 1987.

    MATH  Google Scholar 

  62. D.D. Joseph, R. Glowinski, J. Feng and T.W. Pan, A three-dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid. J. Fluid Mech. 283 (1995), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  63. D. Kay, D. Loghin, and A.J. Wathen, A preconditioner for the steady-state Navier-Stokes equations, SIAM J. Sci. Comput. 24 (2002), 237–256.

    Article  MathSciNet  MATH  Google Scholar 

  64. D. Kolymbas, An outline of hypoplasticity, Archive of Applied Mechanics 61 (1991), 143–151.

    MATH  Google Scholar 

  65. B. Koobus and C. Farhat, Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes. Comput. Methods Appl. Mech. Engrg. 170no. 1–2 (1999), 103–129.

    Article  MathSciNet  MATH  Google Scholar 

  66. M.K. Kwan, M.W. Lai and V.C. Mow. A finite-deformation theory for cartilage and other soft hydrated connective tissues-I. Equilibrium results. J. Biomech. 23no. 2 (1990), 145–155.

    Article  Google Scholar 

  67. D. Kuzmin, Numerical simulation of mass transfer and chemical reactions in gasliquid flows. In: Proceedings of the 3rd European Conference on Numerical Mathematics and Advanced Applications, World Scientific, 2000, 237–244.

    Google Scholar 

  68. D. Kuzmin and S. Turek, High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. J. Comput. Phys. 198 (2003), 131–158.

    Article  MathSciNet  Google Scholar 

  69. D. Kuzmin and S. Turek, Efficient numerical techniques for flow simulation in bubble column reactors. In: Preprints of the 5th German-Japanese Symposium on Bubble Columns, VDI/GVC, 2000, 99–104.

    Google Scholar 

  70. D. Kuzmin and S. Turek, Finite-element discretization tools for gas-liquid flows. In: M. Sommerfeld (ed.), Bubbly Flows: Analysis, Modelling and Calculation, Springer, 2004, 191–201.

    Google Scholar 

  71. D. Kuzmin and S. Turek, Multidimensional FEM-TVD paradigm for convectiondominated flows. Proceedings of the IV. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Book of Abstracts, Volume II, 2004.

    Google Scholar 

  72. D. Kuzmin and S. Turek, Numerical simulation of turbulent bubbly flows. Technical report 254, University of Dortmund, 2004. To appear in: Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, September 22–-24, 2004.

    Google Scholar 

  73. P. Le Tallec and S. Mani, Numerical analysis of a linearised fluid-structure interaction problem. Num. Math. 87no. 2 (2000), 317–354.

    Article  MATH  Google Scholar 

  74. M.E. Levenston, E.H. Frank and A.J. Grodzinsky, Variationally derived 3-field finite-element formulations for quasistatic poroelastic analysis of hydrated biological tissues. Comp. Meth. Appl. Mech. Engng. 156 (1998), 231–246.

    Article  MathSciNet  MATH  Google Scholar 

  75. A.J. Lew, G.C. Buscaglia and P.M. Carrica, A note on the numerical treatment of the Κ-epsilon turbulence model. Int. J. Comput. Fluid Dyn. 14no. 3 (2001), 201–209.

    Article  MATH  Google Scholar 

  76. G. Liao and B. Semper, A Moving Grid Finite-Element Method Using Grid Deformation, Numerical Methods for Partial Differential Equations 11 (1995), 603–615.

    Article  MathSciNet  MATH  Google Scholar 

  77. F. Liu, S. Ji and G. Liao, An Adaptive Grid Method and its Application to Steady Euler Flow Calculations, SIAM Journal on Scientific Computing 20no. 3 (1998), 811–825.

    Article  MathSciNet  Google Scholar 

  78. D. Loghin and A.J. Wathen, Schur complement preconditioning for elliptic systems of partial differential equations, Numer. Linear Algebra Appl. 10 (2003), 423–443.

    Article  MathSciNet  MATH  Google Scholar 

  79. J. Málek, K.R. Rajagopal and M. Ruzicka, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Mathematical Models and Methods in Applied Sciences 5 (1995), 789–812.

    Article  MathSciNet  MATH  Google Scholar 

  80. F. Maršík, Termodynamika kontinua, Academia, Praha, 1. edition, 1999.

    Google Scholar 

  81. F. Maršík and I. Dvořák, Biothermodynamika, Academia, Praha, 2. edition, 1998.

    Google Scholar 

  82. W. Maurel, Y. Wu, N. Magnenat Thalmann and D. Thalmann, Biomechanical models for soft tissue simulation, ESPRIT basic research series, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  83. B. Maury, Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains, J. Comput. Phy. 156 (1999), 325–351.

    Article  MathSciNet  MATH  Google Scholar 

  84. G. Medić and B. Mohammadi, NSIKE-an incompressible Navier-Stokes solver for unstructured meshes. INRIA Research Report 3644 (1999).

    Google Scholar 

  85. M.I. Miga, K.D. Paulsen, F.E. Kennedy, P.J. Hoopes, D.W. Hartov and A. Roberts, Modeling surgical loads to account for subsurface tissue deformation during stereotactic neurosurgery, In IEEE SPIE Proceedings of Las er-Tissue Interaction IX, Part B: Soft-tissue Modeling 3254 (1998), 501–511.

    Google Scholar 

  86. B. Mohammadi, A stable algorithm for the k-epsilon model for compressible flows. INRIA Research Report 1355 (1990).

    Google Scholar 

  87. B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. Wiley, 1994.

    Google Scholar 

  88. M.A. Olshanskii and A. Reusken, Convergence analysis of a multigrid method for a convection-dominated model problem, SIAM J. Num. Anal. 43 (2004), 1261–1291.

    Article  MathSciNet  Google Scholar 

  89. M.A. Olshanskii and A. Reusken, Analysis of a Stokes interface problem, Numer. Math. 103 (2006), 129–149.

    Article  MathSciNet  MATH  Google Scholar 

  90. C.W.J. Oomens and D.H. van Campen, A mixture approach to the mechanics of skin, J. Biomech. 20no. 9 (1987), 877–885.

    Article  Google Scholar 

  91. N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski and T.W. Pan, A New Formulation of the Distributed Lagrange Multiplier/Fictitious-Domain Method for Particulate Flows, Int. J. Multiphase Flow 26 (2000), 1509–1524.

    Article  MATH  Google Scholar 

  92. S.V. Patankar, Numerical Heat Transfer and Fluid Flow. McGraw-Hill, 1980.

    Google Scholar 

  93. K.D. Paulsen, M.I. Miga, F.E. Kennedy, P.J. Hoopes, A.Hartov and D.W. Roberts, A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery, IEEE Transactions on Biomedical Engineering 46no. 2 (1999), 213–225.

    Article  Google Scholar 

  94. C.S. Peskin, Numerical analysis of blood flow in the heart, J. Computational Phys. 25no. 3 (1977), 220–252.

    Article  MathSciNet  MATH  Google Scholar 

  95. C.S. Peskin, The fluid dynamics of heart valves: experimental, theoretical, and computational methods, In: Annual review of fluid mechanics, Vol. 14, 235–259, Annual Reviews, Palo Alto, Calif., 1982.

    Article  MathSciNet  Google Scholar 

  96. C.S. Peskin and D.M. McQueen, Modeling prosthetic heart valves for numerical analysis of blood flow in the heart, J. Comput. Phys. 37no. 1 (1980), 113–132.

    Article  MathSciNet  MATH  Google Scholar 

  97. C.S. Peskin and D.M. McQueen, A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys. 81no. 2 (1989), 372–405.

    Article  MathSciNet  MATH  Google Scholar 

  98. A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Advances in Numerical Mathematics. B.G. Teubner, Stuttgart, 1997.

    Google Scholar 

  99. L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations Birkhäuser Verlag, Basel, 1993.

    MATH  Google Scholar 

  100. A. Quarteroni, Modeling the cardiovascular system: a mathematical challenge, In: B. Engquist and W. Schmid (eds), Mathematics Unlimited-2001 and Beyond, 961–972, Springer-Verlag, 2001.

    Google Scholar 

  101. A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics: Problems, models and methods, Computing and Visualization in Science 2no. 4 (2000), 163–197.

    Article  MATH  Google Scholar 

  102. A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics. Comp. Vis. Science 2 (2000), 163–197.

    Article  MATH  Google Scholar 

  103. K.R. Rajagopal, Mechanics of non-Newtonian fluids, Recent Developments in Theoretical Fluid mechanics. Pitman Research Notes in Mathematics 291, eds. G.P. Galdi and J. Necas, 129–162, Longman, 1993.

    Google Scholar 

  104. K.R. Rajagopal and L. Tao, Mechanics of mixtures, World Scientific Publishing Co. Inc., River Edge, NJ, 1995.

    MATH  Google Scholar 

  105. R. Rannacher and S. Turek, A simple non-conforming quadrilateral Stokes element. Numer. Meth. PDEs 8no. 2 (1992), 97–111.

    MathSciNet  MATH  Google Scholar 

  106. R.A. Reynolds and J.D. Humphrey, Steady diffusion within a finitely extended mixture slab, Math. Mech. Solids 3no. 2 (1998), 127–147.

    Article  MathSciNet  Google Scholar 

  107. A. Reusken, Convergence analysis of a multigrid method for convection-diffusion equations, Numer. Math. 91 (2002), 323–349.

    Article  MathSciNet  MATH  Google Scholar 

  108. M. Rumpf, On equilibria in the interaction of fluids and elastic solids, In: Theory of the Navier-Stokes equations, 136–158, World Sci. Publishing, River Edge, NJ, 1998.

    Google Scholar 

  109. P.A. Sackinger, P.R. Schunk and R.R. Rao, A Newton-Raphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite-element implementation, J. Comput. Phys. 125no. 1 (1996), 83–103.

    Article  MathSciNet  MATH  Google Scholar 

  110. D.G. Schaeffer, Instability in the evolution equation describing incompressible granular flow, J. of Differential Equations 66 (1998), 19–50.

    Article  MathSciNet  Google Scholar 

  111. M. Schäfer and S. Turek (with support of F. Durst, E. Krause, R. Rannacher), Benchmark computations of laminar flow around cylinder, In E.H. Hirschel (ed.), Flow Simulation with High-Performance Computers II, Vol. 52 von Notes on Numerical Fluid Mechanics, Vieweg, 1996, 547–566.

    Google Scholar 

  112. R. Schmachtel, Robuste lineare und nichtlineare Lösungsverfahren für die inkompressiblen Navier-Stokes-Gleichungen. PhD thesis, University of Dortmund, 2003.

    Google Scholar 

  113. P. Schreiber, A new finite-element solver for the non-stationary incompressible Navier-Stokes equations in three dimensions, PhD Thesis, University of Heidelberg, 1996.

    Google Scholar 

  114. P. Schreiber and S. Turek, An efficient finite-element solver for the non-stationary incompressible Navier-Stokes equations in two and three dimensions, Proc. Workshop Numerical Methods for the Navier-Stokes Equations, Heidelberg, Oct. 25–-28, 1993, Vieweg.

    Google Scholar 

  115. J.J. Shi, Application of theory of a Newtonian fluid and an isotropic nonlinear elastic solid to diffusion problems, PhD thesis, University of Michigan, Ann Arbor, 1973.

    Google Scholar 

  116. A. Sokolichin, Mathematische Modellbildung und numerische Simulation von Gas-Flüssigkeits-Blasenströmungen. Habilitation thesis, University of Stuttgart, 2004.

    Google Scholar 

  117. A. Sokolichin, G. Eigenberger and A. Lapin, Simulation of buoyancy driven bubbly flow: established simplifications and open questions. AIChE Journal 50no. 1 (2004), 24–45.

    Article  Google Scholar 

  118. R.L. Spilker and J.K. Suh, Formulation and evaluation of a finite-element model for the biphasic model of hydrated soft tissues, Comp. Struct., Front. Comp. Mech. 35no. 4 (1990), 425–439.

    MATH  Google Scholar 

  119. R.L. Spilker, J.K. Suh and V.C. Mow, Finite-element formulation of the nonlinear biphasic model for articular cartilage and hydrated soft tissues including straindependent permeability, Comput. Meth. Bioeng. 9 (1988), 81–92.

    Google Scholar 

  120. J.K. Suh, R.L. Spilker and M.H. Holmes, Penalty finite-element analysis for nonlinear mechanics of biphasic hydrated soft tissue under large deformation, Int. J. Numer. Meth. Engng. 32no. 7 (1991), 1411–1439.

    Article  MATH  Google Scholar 

  121. C. Truesdell, A first course in rational continuum mechanics, Vol. 1, Academic Press Inc., Boston, MA, second edition, 1991.

    MATH  Google Scholar 

  122. S. Turek, A comparative study of time stepping techniques for the incompressible Navier-Stokes equations: From fully implicit nonlinear schemes to semi-implicit projection methods, Int. J. Numer. Meth. Fluids 22 (1996), 987–1011.

    Article  MathSciNet  MATH  Google Scholar 

  123. S. Turek, On discrete projection methods for the incompressible Navier-Stokes equations: An algorithmical approach. Comput. Methods Appl. Mech. Engrg. 143 (1997), 271–288.

    Article  MathSciNet  MATH  Google Scholar 

  124. S. Turek, Efficient Solvers for Incompressible Flow Problems, Springer Verlag, Berlin-Heidelberg-New York, 1999.

    MATH  Google Scholar 

  125. S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach, LNCSE 6, Springer, 1999.

    Google Scholar 

  126. S. Turek et al., FEATFLOW: finite-element software for the incompressible Navier-Stokes equations. User manual, University of Dortmund, 2000. Available at http://www.featflow.de

  127. S. Turek, C. Becker and S. Kilian, Hardware-oriented numerics and concepts for PDE software. Special Journal Issue for PDE Software, Elsevier, International Conference on Computational Science ICCS2002, Amsterdam, 2002, FUTURE 1095 (2003), 1–23.

    Google Scholar 

  128. S. Turek, C. Becker and S. Kilian, Some concepts of the software package FEAST. In: J.M. Palma, J. Dongarra and V. Hernandes (eds), VECPAR’98-Third International Conference for Vector and Parallel Processing, Lecture Notes in Computer Science, Springer, Berlin, 1999.

    Google Scholar 

  129. S. Turek and J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, In: H.-J. Bungartz and M. Schäfer (eds), Fluid-Structure Interaction: Modelling, Simulation, Optimisation, LNCSE, Springer, 2006.

    Google Scholar 

  130. S. Turek and S. Kilian, An example for parallel ScaRC and its application to the incompressible Navier-Stokes equations, Proc. ENUMATH’97, World Science Publ., 1998.

    Google Scholar 

  131. S. Turek and A. Ouazzi, Unified edge-oriented stabilization of non-conforming finite-element methods for incompressible flow problems, to appear in J. Numer. Math. (2007).

    Google Scholar 

  132. S. Turek, A. Ouazzi and R. Schmachtel, Multigrid methods for stabilized non-conforming finite elements for incompressible flow involving the deformation tensor formulation, J. Numer. Math. 10 (2002), 235–248.

    MathSciNet  MATH  Google Scholar 

  133. S. Turek and M. Schäfer, Benchmark computations of laminar flow around cylinder. In: E.H. Hirschel (ed), Flow Simulation with High-Performance Computers II, Vol. 52 of Notes on Numerical Fluid Mechanics, Vieweg, 1996. Co. F. Durst, E. Krause, R. Rannacher.

    Google Scholar 

  134. S. Turek and R. Schmachtel, Fully coupled and operator-splitting approaches for natural convection. Int. Numer. Meth. Fluids 40 (2002), 1109–1119.

    Article  MATH  Google Scholar 

  135. S. Turek, L. Rivkind, J. Hron and R. Glowinski, Numerical Study of a Modified Time-Steeping theta-scheme for incompressible flow simulations, Journal of Scientific Computing 28 (2006), 533–547.

    Article  MathSciNet  MATH  Google Scholar 

  136. S. Turek, D.C. Wan and L.S. Rivkind, The Fictitious-Boundary Method for the Implicit Treatment of Dirichlet Boundary Conditions with Applications to Incompressible Flow Simulations. Challenges in Scientific Computing, Lecture Notes in Computational Science and Engineering 35, Springer, 37–68, 2003.

    Google Scholar 

  137. A.M.P. Valli, G.F. Carey and A.L.G.A. Coutinho, Finite-element simulation and control of nonlinear flow and reactive transport. In: Proceedings of the 10th International Conference on Numerical Methods in Fluids. Tucson, Arizona, 1998, 450–45.

    Google Scholar 

  138. A.M.P. Valli, G.F. Carey and A.L.G.A. Coutinho, Control strategies for timestep selection in simulation of coupled viscous flow and heat transfer. Commun. Numer. Methods Eng. 18no. 2 (2002), 131–139.

    Article  MATH  Google Scholar 

  139. S.P. Vanka, Implicit multigrid solutions of Navier-Stokes equations in primitive variables. J. Comp. Phys. 65 (1985), 138–158.

    Article  MathSciNet  Google Scholar 

  140. J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comp. 7 (1986), 870–891.

    Article  MATH  Google Scholar 

  141. W. J. Vankan, J.M. Huyghe, J.D. Janssen and A. Huson, Poroelasticity of saturated solids with an application to blood perfusion, Int. J. Engng. Sci. 34no. 9 (1996), 1019–1031.

    Article  MATH  Google Scholar 

  142. W.J. Vankan, J.M. Huyghe, J.D. Janssen and A. Huson, Finite-element analysis of blood flow through biological tissue, Int. J. Engng. Sci. 35no. 4 (1997), 375–385.

    Article  MATH  Google Scholar 

  143. M.E. Vermilyea and R.L. Spilker, Hybrid and mixed-penalty finite elements for 3-d analysis of soft hydrated tissue, Int. J. Numer. Meth. Engng. 36no. 24 (1993), 4223–4243.

    Article  MathSciNet  MATH  Google Scholar 

  144. D.C. Wan and S. Turek, Direct Numerical Simulation of Particulate Flow via Multigrid FEM Techniques and the Fictitious-Boundary Method, Int. J. Numer. Method in Fluids 51 (2006), 531–566.

    Article  MathSciNet  MATH  Google Scholar 

  145. D.C. Wan and S. Turek, An Efficient Multigrid-FEM Method for the Simulation of Liquid-Solid Two Phase Flows, J. for Comput. and Appl. Math., in press (2007).

    Google Scholar 

  146. D.C. Wan, S. Turek and L.S. Rivkind, An Efficient Multigrid FEM Solution Technique for Incompressible Flow with Moving Rigid Bodies, In: Numerical Mathematics and Advanced Applications, ENUMATH 2003, Springer, 844–853, 2004.

    Google Scholar 

  147. C. Zoppou, S.I. Barry and G.N. Mercer, Dynamics of human milk extraction: a comparitive study of breast-feeding and breast pumping, Bull. Math. Biology 59no. 5 (1997), 953–973.

    Article  MATH  Google Scholar 

  148. M. Schäfer and S. Turek, Benchmark computations of laminar flow around cylinder, In: E.H. Hirschel (ed), Flow Simulation with High-Performance Computers II. Vol. 52 of Notes on Numerical Fluid Mechanics, Vieweg, 547–566, 1996.

    Google Scholar 

  149. A. Fortes, D.D. Joseph and T. Lundgren, Nonlinear mechanics of fluidization of beds of spherical particles, J. Fluid Mech. 177 (1987), 497–483.

    Article  Google Scholar 

  150. P. Singh, T.I. Hesla and D.D. Joseph, Distributed Lagrange multiplier method for particulate flows with collisions, Int. J. Multiphase Flow 29 (2003), 495–509.

    Article  MATH  Google Scholar 

  151. C. Diaz-Goano, P. Minev and K. Nandakumar, A Lagrange multiplier/fictitious-domain approach to particulate flows, In: W. Margenov and W. Yalamov (eds), Lecture Notes in Computer Science 2179, Springer, 409–422, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Turek, S., Hron, J. (2008). Numerical Techniques for Multiphase Flow with Liquid-Solid Interaction. In: Hemodynamical Flows. Oberwolfach Seminars, vol 37. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7806-6_6

Download citation

Publish with us

Policies and ethics