Skip to main content

Methods for Numerical Flow Simulation

  • Chapter
Hemodynamical Flows

Part of the book series: Oberwolfach Seminars ((OWS,volume 37))

Abstract

This chapter introduces into computational methods for the simulation of PDE-based models of laminar hemodynamical flows. We discuss space and time discretization with emphasis on operator-splitting and finite-element Galerkin methods because of their flexibility and rigorous mathematical basis. Special attention is paid to the simulation of pipe flow and the related question of artificial outflow boundary conditions. Further topics are efficient methods for the solution of the resulting algebraic problems, techniques of sensitivity-based error control and mesh adaptation, as well as flow control and model calibration. We concentrate on laminar flows in which all relevant spatial and temporal scales can be resolved and no additional modeling of turbulence effects is required. This covers most of the relevant situations of hemodynamical flows. The numerical solution of the corresponding systems is complicated mainly because of the incompressibility constraint which enforces the use of implicit methods and its essentially parabolic or elliptic character which requires the prescription of boundary conditions along the whole boundary of the computational domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and J.T. Oden. A posteriori error estimation in finite-element analysis. Comput. Methods Appl. Mech. Enrg. 142 (1997), 1–88.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Bangerth and R. Rannacher, Adaptive Finite-Element Methods for Differential Equations. Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel 2003.

    Google Scholar 

  3. R. Becker, An optimal control approach to a posteriori error estimation for finiteelement discretizations of the Navier-Stokes equations. East-West J. Numer. Math. 8 (2000), 257–274.

    MathSciNet  MATH  Google Scholar 

  4. R. Becker, Mesh adaptation for stationary flow control. J. Math. Fluid Mech. 3 (2001), 317–341.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Becker, Adaptive Finite Elements for Optimal Control Problems. Habilitation thesis, Institute of Applied Mathematics, Univ. of Heidelberg, 2001, http://numerik.iwr.uni-heidelberg.de/

  6. R. Becker and M. Braack, Multigrid techniques for finite elements on locally refined meshes. Numer. Linear Algebra Appl. 7 (2000), 363–379.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Becker and M. Braack, A finite-element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001), 173–199.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Becker and Th. Dunne, VisuSimple: An interactive visualization utility for scientific computing. Abschlußband SFB 359, Reactive Flows, Diffusion and Transport (W. Jäger et al., eds.), Springer, Berlin-Heidelberg New York, 2007.

    Google Scholar 

  9. R. Becker, V. Heuveline, and R. Rannacher, An optimal control approach to adaptivity in computational fluid mechanics. Int. J. Numer. Meth. Fluids. 40 (2002), 105–120.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Becker, D. Meidner, R. Rannacher, and B. Vexler, Adaptive finite-element methods for P DE-constrained optimal control problems. In ‘Reactive Flows, Diffusion and Transport’, Abschlußband SFB 359, University of Heidelberg, (W. Jäger et al., eds.), Springer, Heidelberg, 2007.

    Google Scholar 

  11. R. Becker, H. Kapp, and R. Rannacher, Adaptive finite-element methods for optimal control of partial differential equations: basic concepts. SIAM J. Optimization Control 39 (2000), 113–132.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Becker and R. Rannacher, Weighted a posteriori error estimates in FE methods. Lecture ENUMATH-95, Paris, Sept. 18-22, 1995. In Proc. ‘ENUMATH-97’ (H.G. Bock, et al., eds.), pp. 621–637, World Scientific Publ., Singapore, 1998.

    Google Scholar 

  13. R. Becker and R. Rannacher, A feed-back approach to error control in finite-element methods: Basic analysis and examples. East-West J. Numer. Math. 4 (1996), 237–264.

    MathSciNet  MATH  Google Scholar 

  14. R. Becker and R. Rannacher, An optimal control approach to error estimation and mesh adaptation in finite-element methods. Acta Numerica 2000 (A. Iserles, ed.), pp. 1–102, Cambridge University Press, 2001.

    Google Scholar 

  15. R. Becker and B. Vexler, Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations. J. Comput. Phys. 206 (2005), 95–110.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Becker and B. Vexler. Optimal Flow Control by Adaptive Finite-Element Meth-ods. Advances in Mathematical Fluid Mechanics, Birkhäuser, Basel-Boston-Berlin, in preparation.

    Google Scholar 

  17. C. Bernardi, O. Bonnon, C. Langouët, and B. Mëtivet. Residual error indicators for linear problems: Extension to the Navier-Stokes equations. In Proc. 9th Int. Conf. ‘Finite Elements in Fluids’, 1995.

    Google Scholar 

  18. S. Bönisch and V. Heuveline, Advanced flow visualization with HiVision. Abschlußb and SFB 359, Reactive Flows, Diffusion and Transport (W. Jäger et al., eds.), Springer, Berlin-Heidelberg New York, 2007.

    Google Scholar 

  19. M. Braack and E. Burman: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal. 43 (2006), 2544–2566.

    MathSciNet  MATH  Google Scholar 

  20. M. Braack and T. Richter, Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements. Computers and Fluids 35 (2006), 372–392.

    Article  MATH  Google Scholar 

  21. S. Brenner and R.L. Scott, The Mathematical Theory of the Finite-Element Method. Springer, Berlin Heidelberg New York, 1994.

    Google Scholar 

  22. S. Brezzi and R. Falk, Stability of higher-order Hood-Taylor methods. J. Numer. Anal. 28 (1991), 581–590.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Carey and J. Oden, Finite Elements, Computational Aspects. Volume III. Prentice-Hall, 1984.

    Google Scholar 

  24. Th. Dunne and R. Rannacher. Numerics of Fluid-Structure Interaction. In ‘Fluid-Structure Interaction: Modelling, Simulation, Optimisation’ (H.-J. Bungartz and M. Schäfer, eds.), in Springer’s LNCSE-Series, 2006.

    Google Scholar 

  25. K. Eriksson, C. Johnson, and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Model. Math. Anal. Numer. 19 (1985), 611–643.

    MathSciNet  MATH  Google Scholar 

  26. K. Eriksson and C. Johnson. Adaptive finite-element methods for parabolic problems, I: A linear model problem. SIAM J. Numer. Anal. 28 (1991), 43–77.

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Eriksson and C. Johnson. Adaptive finite-element methods for parabolic problems, IV: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995), 1729–1749.

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Eriksson and C. Johnson. Adaptive finite-element methods for parabolic problems, V: Long-time integration. SIAM J. Numer. Anal. 32 (1995), 1750–1763.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for differential equations. Acta Numerica 1995 (A. Iserles, ed.), pp. 105–158, Cambridge University Press, 1995.

    Google Scholar 

  30. M. Fernandez, V. Milisic, and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of ODE’s and hyperbolic PDE’s. SIAM J. MMS 4 (2005), 215–236.

    MathSciNet  MATH  Google Scholar 

  31. L. Formaggia, J.F. Gerbeau, F. Nobile, and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comp. Methods Appl. Mech. Engnrg. 191 (2001), 561–582.

    Article  MathSciNet  MATH  Google Scholar 

  32. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. 1: Linearized Steady problems, Vol. 2: Nonlinear Steady Problems, Springer: Berlin-Heidelberg-New York, 1998.

    Google Scholar 

  33. G.P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem. In this volume.

    Google Scholar 

  34. R. Becker and M. Braack, Gascoigne: A C++ numerics library for scientific computing. Institute of Applied Mathematics, University of Heidelberg, URL http://www.gascoigne.uni-hd.de/, 2005.

  35. M.B. Giles and E. Süli, Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica 2002 (A. Iserles, ed.), pp. 145–236, Cambridge University Press, 2002.

    Google Scholar 

  36. V. Girault and P.-A. Raviart, Finite-Element Methods for the Navier-Stokes Equations. Springer: Berlin-Heidelberg-New York, 1986.

    MATH  Google Scholar 

  37. R. Glowinski, Finite-element methods for incompressible viscous flow. In ‘Handbook of Numerical Analysis’ (P.G. Ciarlet and J.-L. Lions, eds.), Volume IX: Numerical Methods for Fluids (Part 3), North-Holland: Amsterdam, 2003.

    Google Scholar 

  38. P.M. Gresho and R.L. Sani, Incompressible Flow and the Finite-Element Method. John Wiley & Sons: Chichester, 1998.

    MATH  Google Scholar 

  39. P. Hansbo and C. Johnson. Adaptive streamline diffusion finite-element methods for compressible flow using conservative variables. Comput. Methods Appl. Mech. Engrg 87 (1991), 267–280.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Hartmann, A posteriori Fehlerschätzung und adaptive Schrittweiten-und Ortsgittersteuerung bei Galerkin-Verfahren für die Wärmeleitungsgleichung. Diploma thesis, Institute of Applied Mathematics, University of Heidelberg, 1998.

    Google Scholar 

  41. R. Hartmann, Adaptive Finite-Element Methods for the Compressible Euler Equations. Dissertation, Institute of Applied Mathematics, Universität Heidelberg, 2002.

    Google Scholar 

  42. R. Hartmann and P. Houston, Adaptive discontinuous Galerkin finite-element methods for the compressible Euler equations. J. Comput. Phys. 183 (2002), 508–532.

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Hartmann and P. Houston, Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: method formulation. Int. J. Numer. Anal. Model. 3 (2006), 1–20.

    MathSciNet  MATH  Google Scholar 

  44. R. Hartmann and P. Houston, Symmetric interior penalty DG methods for the compressible Navier-Stokes equations II: goal-oriented a posteriori error estimation. Int. J. Numer. Anal. Model. 3 (2006), 141–162.

    MathSciNet  MATH  Google Scholar 

  45. V. Heuveline, HiFlow: A multi-purpose finite-element package, Rechenzentrum, Universität Karlsruhe, URL http://hiflow.de/.

  46. V. Heuveline, HiVision: A visualization platform, Rechenzentrum, Universität Karlsruhe, URL http://hiflow.de/.

  47. V. Heuveline and R. Rannacher, Adaptive FEM for eigenvalue problems with application in hydrodynamic stability analysis. Proc. Int. Conf. ‘Advances in Numerical Mathematics’, Moscow, Sept. 16-17, 2005 (W. Fitzgibbon et al., eds.), pp. 109–140, Institute of Numerical Mathematics RAS, Moscow, 2006.

    Google Scholar 

  48. J. Heywood, R. Rannacher, and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Math. Fluids 22 (1992), 325–352.

    Article  MathSciNet  Google Scholar 

  49. P. Houston, R. Rannacher, and E. Süli. A posteriori error analysis for stabilized finite-element approximation of transport problems. Comput. Methods Appl. Mech. Enrg. 190 (2000), 1483–1508.

    Article  MATH  Google Scholar 

  50. T.J.R. Hughes and A.N. Brooks, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation. Comput. Meth. Appl. Mech. Engrg. 32 (1982), 199–259.

    Article  MathSciNet  MATH  Google Scholar 

  51. T.J.R. Hughes, L.P. Franc, and M. Balestra, A new finite-element formulation for computational fluid mechanics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation. Comput. Meth. Appl. Mech. Engrg. 59 (1986), 85–99.

    Article  MATH  Google Scholar 

  52. V. John, Higher order finite-element methods and multigrid solvers in a benchmark problem for the 3D Navier-Stokes equations. Int. J. Numer. Meth. Fluids 40 (2002), 775–798.

    Article  MATH  Google Scholar 

  53. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite-Element Method. Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  54. C. Johnson. Adaptive finite-element methods for diffusion and convection problems. Comput. Methods Appl. Mech. Eng. 82 (1990), 301–322.

    Article  MATH  Google Scholar 

  55. C. Johnson, R. Rannacher, and M. Boman. Numerics and hydrodynamic stability: Towards error control in CFD. SIAM J. Numer. Anal. 32 (1995), 1058–1079.

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Korotov, P. Neitaanmäki and S. Repin. A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery, J. Numer. Math. 11 (2003), 33–53.

    MathSciNet  MATH  Google Scholar 

  57. L. Machiels, A.T. Patera, and J. Peraire, Output bound approximation for partial differential equations; application to the incompressible Navier-Stokes equations. Industrial and Environmental Applications of Direct and Large Eddy Numerical Sim-ulation (S. Biringen, ed.), Springer, Berlin Heidelberg New York, 1998.

    Google Scholar 

  58. V. Milisic and A. Quarteroni, Analysis of lumped parameter models for blood flow simulations and their relation with 1D models. M2AN, Vol.IV (2004), 613–632.

    MathSciNet  Google Scholar 

  59. J.T. Oden, W. Wu, and M. Ainsworth, An a posteriori error estimate for finite-element approximations of the Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 111 (1993), 185–202.

    Article  MathSciNet  Google Scholar 

  60. J.T. Oden and S. Prudhomme. On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 176 (1999), 313–331.

    Article  MathSciNet  MATH  Google Scholar 

  61. J.T. Oden and S. Prudhomme. Estimation of modeling error in computational mechanics. Preprint, TICAM, The University of Texas at Austin, 2002.

    Google Scholar 

  62. M. Paraschivoiu and A.T. Patera. Hierarchical duality approach to bounds for the outputs of partial differential equations. Comput. Methods Appl. Mech. Enrg. 158 (1998), 389–407.

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Quarteroni, S. Ragni, and A. Veneziani, Coupling between lumped and distributed models for blood flow problems. Computing and Visualization in Science 4 (2001) 2, 111–124.

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Quarteroni and A. Veneziani, Analysis of a geometrical multiscale model based on the coupling of PDE’s and ODE’s for blood flow simulations. SIAM J. MMS. 1 (2003), 173–195

    MathSciNet  MATH  Google Scholar 

  65. R. Rannacher, Finite-element methods for the incompressible Navier-Stokes equations. In ‘Fundamental Directions in Mathematical Fluid Mechanics’ (G.P. Galdi et al., eds.), pp. 191–293, Birkhäuser, Basel, 2000.

    Google Scholar 

  66. R. Rannacher, Incompressible viscous flow. In ‘Encyclopedia of Computational Mechanics’ (E. Stein, et al., eds.), Volume 3 ‘Fluids’, John Wiley, Chichester, 2004.

    Google Scholar 

  67. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Meth. Part. Diff. Equ. 8 (1992), 97–111.

    Article  MathSciNet  MATH  Google Scholar 

  68. R. Becker, D. Meidner, and B. Vexler, RoDoBo: A C++ library for optimization with stationary and nonstationary PDEs. Institute of Applied Mathematics, University of Heidelberg, URL http://www.rodobo.uni-hd.de/, 2005.

  69. M. Schäfer and S. Turek. Benchmark computations of laminar flow around a cylinder. In Flow Simulation with High-Performance Computers II (E. H. Hirschel, ed.), pp. 547–566, DFG priority research program results 1993-1995, vol. 52 of Notes Numer. Fluid Mech., Vieweg, Wiesbaden, 1996.

    Google Scholar 

  70. L. Tobiska and F. Schieweck, A nonconforming finite-element method of up-stream type applied to the stationary Navier-Stokes equation. M2AN 23 (1989), 627–647.

    MathSciNet  MATH  Google Scholar 

  71. F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen-Theorie, Verfahren und Anwendungen. Vieweg, Braunschweig, 2005.

    MATH  Google Scholar 

  72. S. Turek, Efficient solvers for incompressible flow problems: an algorithmic and computational approach. Springer, Heidelberg-Berlin-New York, 1999.

    MATH  Google Scholar 

  73. S. Turek and M. Schäfer, Benchmark computations of laminar flow around a cylinder. In ‘Flow Simulation with High-Performance Computers II’ (E.H. Hirschel, ed.), Volume 52 of Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig, 1996.

    Google Scholar 

  74. S. Turek, Efficient solvers for incompressible flow problems. In this volume.

    Google Scholar 

  75. B. Vexler, Adaptive Finite-Element Methods for Parameter Identification Problems. Dissertation, Institute of Applied Mathematics, University of Heidelberg, 2004.

    Google Scholar 

  76. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley/Teubner, New York Stuttgart, 1996.

    MATH  Google Scholar 

  77. R. Becker and Th. Dunne, VisuSimple: An open source interactive visualization utility for scientific computing. Institute of Applied Mathematics, University of Heidelberg, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Rannacher, R. (2008). Methods for Numerical Flow Simulation. In: Hemodynamical Flows. Oberwolfach Seminars, vol 37. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7806-6_4

Download citation

Publish with us

Policies and ethics