• Anne M. Robertson
  • Adélia Sequeira
  • Marina V. Kameneva
Part of the Oberwolfach Seminars book series (OWS, volume 37)


Hemorheology is the science of deformation and flow of blood and its formed elements. This field includes investigations of both macroscopic blood properties using rheometric experiments as well as microscopic properties in vitro and in vivo. Hemorheology also encompasses the study of the interactions among blood components and between these components and the endothelial cells that line blood vessels.


Shear Rate Apparent Viscosity Blood Viscosity High Shear Rate Complex Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Alexy, R.B. Wenby, E. Pais, L.J. Goldstein, W. Hogenauer, and H.J. Meiselman. An automated tube-type blood viscometer: Validation studies. Biorheology, 42:237–247, 2005.Google Scholar
  2. [2]
    M. Anand, K. Rajagopal, and K.R. Rajagopal. A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. of Theoretical Medicine, 5:183–218, 2003.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M. Anand, K. Rajagopal, and K.R. Rajagopal. A model for the formation and lysis of blood clots. Pathophysiol. Haemost. Thromb., 34:109–120, 2005.CrossRefGoogle Scholar
  4. [4]
    M. Anand and K.R. Rajagopal. A shear thinning viscoelastic fluid model for describing the flow of blood. Int. J. Cardiovascular Medicine and Science, 4(2):59–68, 2004.Google Scholar
  5. [5]
    A.M. Artoli, A. Sequeira, A.S. Silva-Herdade and C. Saldanha. Leukocytes rolling and recruitment by endothelial cells: Hemorheological experiments and numerical simulations. Journal of Biomechanics, 40:3493–3502, 2007.CrossRefGoogle Scholar
  6. [6]
    F.I. Ataullakhanov and M.A. Panteleev. Mathematical modeling and computer simulation in blood coagulation. Pathophysiol. Haemost. Thromb, 34:60–70, 2005.CrossRefGoogle Scholar
  7. [7]
    H.A. Barnes. The yield stress-a review or * — everything flows? J. Non-Newtonian Fluid Mech., 81:133–178, 1999.CrossRefMATHGoogle Scholar
  8. [8]
    H.A. Barnes and K. Walters. The yield stress myth? Rheol. Acta, 24(4):323–326, 1985.CrossRefGoogle Scholar
  9. [9]
    A.M. Benis and J. Lacoste. Study of erythrocyte aggregation by blood viscosity at low shear rates using a balance method. Circ. Res., 22:29–42, 1968.Google Scholar
  10. [10]
    M. Bessis. Living Blood Cells and Their Ultrastructure. Springer-Verlag, 1973.Google Scholar
  11. [11]
    J.J. Bishop, A.S. Popel, M. Intaglietta, and P.C. Johnson. Rheological effects of red blood cell aggregation in the venous network: a review of recent studies. Biorheology, 38:263–274, 2001.Google Scholar
  12. [12]
    T. Bodnár and A. Sequeira. Numerical simulation of the coagulation dynamics of blood. Computational and Mathematical Methods in Medicine, to appear.Google Scholar
  13. [13]
    M.M. Brandão, A. Fontes, M.L. Barjas-Castro, L.C. Barbosa, F.F. Costa, C.L. Cesar, and S.T. Saad. Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease. Eur J Haematol, 70(4):207–211, 2003.CrossRefGoogle Scholar
  14. [14]
    D.E. Brooks, J.W. Goodwin, and G.V.F. Seaman. Interactions among erythrocytes under shear. J. Appl. Physiol., 28(2):172–177, 1970.Google Scholar
  15. [15]
    M. Bureau, J.C. Healy, D. Bourgoin, and M. Joly. Rheological hysteresis of blood at low shear rate. Biorheology, 17:191–203, 1980.Google Scholar
  16. [16]
    A.C. Burton. Physiology and the Biophysics of the Circulation. Year Book Medical Publishers Inc., 1972.Google Scholar
  17. [17]
    C.G. Caro, T.J. Pedley, R.C. Schroter, and W.A. Seed. The Mechanics of the Circulation. Oxford University Press, 1978.Google Scholar
  18. [18]
    K.B. Chandran, A.P. Yoganathan, and S.E. Rittgers. Biofluid Mechanics: The Human Circulation. CRC Press, 2006.Google Scholar
  19. [19]
    S.E. Charm and G.S. Kurland. Static method for determining blood yield stress. Nature, 216:1121–1123, 1967.CrossRefGoogle Scholar
  20. [20]
    S.E. Charm and G.S. Kurland. Blood Flow and Microcirculation. John Wiley & Sons, 1974.Google Scholar
  21. [21]
    D.C.-H. Cheng. Yield stress: a time dependent property and how to measure it. Rheol. Acta, 25(5):542–554, 1986.CrossRefGoogle Scholar
  22. [22]
    D.C.-H. Cheng. Characterisation of thixotropy revisited. Rheol Acta, 42(4):372–382, 2003.CrossRefGoogle Scholar
  23. [23]
    S. Chien. White blood cell rheology. In: Clinical Blood Rheology, Vol. I, G.D.O. Lowe, Ed., CRC Press, Boca Raton, Florida, 1998, pp. 87–109.Google Scholar
  24. [24]
    S. Chien. Red cell deformability and its relevance to blood flow. Ann. Rev. Physiology, 49:177–192, 1987.CrossRefGoogle Scholar
  25. [25]
    S. Chien, R.G. King, R. Skalak, S. Usami, and A.L. Copley. Viscoelastic properties of human blood and red cell suspensions. Biorheology, 12:341–346, 1975.Google Scholar
  26. [26]
    S. Chien, S. Usami, and J.F. Bertler. Abnormal rheology of oxygenated blood in sickle cell anemia. J. Clin. Invest., 49(4):623–634, 1970.CrossRefGoogle Scholar
  27. [27]
    S. Chien, S. Usami, R.J. Dellenback, and C.A. Bryant. Comparative hemorheology-hematological implications of species differences in blood viscosity. Biorheology, 8(1):35–57, 1971.Google Scholar
  28. [28]
    S. Chien. Shear dependence of effective cell volume as a determinant of blood viscosity. Science, 168:977–979, 1970.CrossRefGoogle Scholar
  29. [29]
    S. Chien, S. Usami, R.J. Dellenback, and M.I. Gregersen. Shear-dependent deformation of erythrocytes in rheology of human blood. Am. J. Physiol., 219(1):136–142, 1970.Google Scholar
  30. [30]
    S. Chien, S. Usami, H.M. Taylor, J.L. Lundberg, and M.I. Gregersen. Effect of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol., 21(1):81–87, 1966.Google Scholar
  31. [31]
    H. Chmiel and E. Walitza. On the Rheology of Blood and Synovial Fluid. Research Studies Press, 1980.Google Scholar
  32. [32]
    H. Chmiel and I. Anadere and E. Walitza.The determination of blood viscoelasticity in clinical hemorheology. Biorheology, 27:883–894, 1990.Google Scholar
  33. [33]
    Y.I. Cho and K.R. Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part I: Steady flows. Biorheology, 28:241–262, 1991.Google Scholar
  34. [34]
    G.R. Cokelet, E.W. Merrill, E.R. Gilliland, H. Shin, A. Britten, and R.E. Wells, Jr. The rheology of human blood — Measurement near and at zero shear rate. Trans. Soc. Rheol., 7:303–317, 1963.CrossRefGoogle Scholar
  35. [35]
    G.R. Cokelet. Dynamics of Red Blood Cell Deformation and Aggregation, and In Vivo Flow. In: Erytrocyte Mechanics and Blood Flow, Kroc Foundation Series Vol. 13, Eds. G.R. Cokelet, H.J. Meiselman, D.E. Brooks, Alan R. Liss, Inc., New York, 1980.Google Scholar
  36. [36]
    G.R. Cokelet. Viscometric, in vitro and in vivo blood viscosity relationships: how are they related? Biorheology, 36:343–358, 1999.Google Scholar
  37. [37]
    G. Colantuoni, J.D. Hellums, J.L. Moake, and C.P. Alfrey. The response of human platelets to shear stress at short exposure times. Trans. Amer. Soc. Artificial Int. Organs, 23:626–631, 1977.Google Scholar
  38. [38]
    A.L. Copley, L.C. Krchma, and M.E. Whitney. I. Viscosity studies and anamolous flow properties of human blood systems with heparin and other anticoagulents. J. Gen. Physiol., 26:49–64, 1942.CrossRefGoogle Scholar
  39. [39]
    A.L. Copley, C.R. Huang, and R.G. King. Rheogoniometric studies of whole human blood at shear rates from 1000 to 0.0009 sec-1 Part I-Experimental findings. Biorheology, 10(1):17–22, 1973.Google Scholar
  40. [40]
    A.L. Copley, R.G. King, S. Chien, S. Usami, R. Skalak, and C.R. Huang. Microscopic observations of viscoelasticity of human blood in steady and oscillatory shear. Biorheology, 12:257–263, 1975.Google Scholar
  41. [41]
    V. Cristini and G.S. Kassab. Computer modeling of red blood cell rheology in the microcirculation: A brief overview. Ann Biomed Eng, 33(12): 1724–1727, 2005.CrossRefGoogle Scholar
  42. [42]
    S. Deutsch and W.M. Phillips. The use of a Taylor-Couette stability problem to validate a constitutive equation for blood. Biorheology, 14:253–266, 1977.Google Scholar
  43. [43]
    L. Dintenfass. Blood Microrheology-Viscosity Factors in Blood Flow, Ischaemia and Thrombosis. Butterworth, 1971.Google Scholar
  44. [44]
    L. Dintenfass. Blood Viscosity, Hyperviscosity and Hyperviscosaemia. MTP Press Ltd, 1985.Google Scholar
  45. [45]
    A.M. Dondorp, B.J. Angus, K. Chotivanich, K. Silamut, R. Ruangveerayuth, M.R. Hardeman, P.A. Kager, J. Vreeken, and N.J. White. Red blood cell deformability as a predictor of anemia in severe falciparum malaria. Am. J. of Trop. Med. & Hyg., 60(5):733–737, 1999.Google Scholar
  46. [46]
    A.M. Dondorp, P.A. Kager, J. Vreeken, and N.J. White. Abnormal blood flow and red blood cell deformability in severe malaria. Parasitol Today, 16(6):228–232, 2000.CrossRefGoogle Scholar
  47. [47]
    C. Dong and X.X. Lei. Biomechanics of cell rolling: shear flow, cell-surface adhesion and cell deformability. J. Biomech, 33(1):35–43, 2000.CrossRefGoogle Scholar
  48. [48]
    R. Fåhraeus. The suspension stability of the blood. Physiol. Rev., 9(2):241–274, 1929.Google Scholar
  49. [49]
    R. Fåhraeus and T. Lindqvist. The viscosity of the blood in narrow capillary tubes. Am. J. Physiol., 96:562–568, 1931.Google Scholar
  50. [50]
    T.M. Fischer, M. Stöhr-Lissen, and H. Schmid-Schönbein. The red cell as a fluid droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow. Science, 202:894–896, 1978.CrossRefGoogle Scholar
  51. [51]
    A.L. Fogelson. Continuum models of platelet aggregation: formulation and mechanical properties. SIAM J. Appl. Math., 52(4):1089–1110, 1992.MathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    M. Fröhlich, H. Schunkert, H.W. Hense, A. Tropitzsch, P. Hendricks, A. Döring, G.A. Riegger, and W. Koenig. Effects of hormone replacement therapies on fibrinogen and plasma viscosity in postmenopausal women. British Journal of Haematology, 100(3):577–581, 1998.CrossRefGoogle Scholar
  53. [53]
    Y.C. Fung. Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, 1993.Google Scholar
  54. [54]
    Y.C. Fung, W.C. Tsang, and P. Patitucci. High-resolution data on the geometry of red blood cells. Biorheology, 18:369–385, 1981.Google Scholar
  55. [55]
    G.P. Galdi. Mathematical problems in classical and non-Newtonian fluid mechanics. In Hemodynamical Flows. Modeling, Analysis and Simulation. Oberwolfach-Seminars, Vol. 37, p. 121–273. Birkhäuser Verlag, 2008.MathSciNetGoogle Scholar
  56. [56]
    L. Game, J.C. Voegel, P. Schaaf, and J.F. Stoltz. Do physiological concentrations of IgG induce a direct aggregation of red blood cells: comparison with fibrinogen. Biochim Biophys Acta, 1291(2):138–142, 1996.Google Scholar
  57. [57]
    H.L. Goldsmith. Poiseuille medal award lecture: From papermaking fibers to human blood cells. Biorheology, 30:165–190, 1993.Google Scholar
  58. [58]
    H.L. Goldsmith, G.R. Cokelet, and P. Gaehtgens. Robin Fåhraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol., 257:H1005–H1015, 1989.Google Scholar
  59. [59]
    J. Goldstone, H. Schmid-Schönbein, and R.E. Wells. The rheology of red blood cell aggregates. Microvas. Res., 2:273–286, 1970.CrossRefGoogle Scholar
  60. [60]
    A.C. Guyton and J.E. Hall. Textbook of Medical Physiology. W.B. Saunders Company, (Tenth Edition), 2000.Google Scholar
  61. [61]
    J. Harkness. The viscosity of human blood plasma; its measurement in health and disease. Biorheology, 8(3):171–193, 1971.Google Scholar
  62. [62]
    R.M. Hochmuth, C.A. Evans, H.C. Wiles, and J.T. McCown. Mechanical measurement of red cell membrane thickness. Science, 220:101–102, 1983.CrossRefGoogle Scholar
  63. [63]
    C.R. Huang, R.G. King, and A.L. Copley. Rheogoniometric studies of whole human blood at shear rates down to 0.0009 sec−1 II-Mathematical interpretation. Biorheology, 10(1):23–28, 1973.Google Scholar
  64. [64]
    M.V. Kameneva, K.O. Garrett, M.J. Watach, and H.S. Borovetz. Red blood cell aging and risk of cardiovascular diseases. Clinical Hemorheology and Microcirculation, 18(1):67–74, 1998.Google Scholar
  65. [65]
    M.V. Kameneva, M.J. Watach, and H.S. Borovetz. Gender difference in rheologic properties of blood and risk of cardiovascular diseases. Clinical Hemorheology and Microcirculation, 21:357–363, 1999.Google Scholar
  66. [66]
    M.V. Kameneva, M.J. Watach, and H.S. Borovetz. In: Advances in Experimental Medicine & Biology. Oxygen Transport to Tissue XXIV, volume 530. Kluwer Academic/Plenum Publishers, 2003.Google Scholar
  67. [67]
    M.V. Kameneva. Effect of hematocrit on the development and consequences of some hemodynamic disorders. In Contemporary Problems of Biomechanics, pages 111–126. CRC Press, 1990.Google Scholar
  68. [68]
    M.V. Kameneva, J.F. Antaki, H.S. Borovetz, B.P. Griffith, K.C. Butler, K.K. Yeleswarapu, M.J. Watach, and R.L. Kormos. Mechanisms of red blood cell trauma in assisted circulation. Rheologic similarities of red blood cell transformations due to natural aging and mechanical stress. ASAIO Journal, 41(3):M457–M460, 1995.Google Scholar
  69. [69]
    M.V. Kameneva, A. Undar, J.F. Antaki, M.J. Watach, J.H. Calhoon, and H.S. Borovetz. Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: factors related to cardiopulmonary bypass. ASAIO Journal, 45(4):307–310, 1999.CrossRefGoogle Scholar
  70. [70]
    S.R. Keller and R. Skalak. Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech., 120:27–47, 1982.CrossRefMATHGoogle Scholar
  71. [71]
    M.R. King and D.A. Hammer. Multiparticle adhesive dynamics: Hydrodynamic recruitment of rolling leukocytes. PNAS, 98(26):14919–14924, 2001.CrossRefGoogle Scholar
  72. [72]
    W. Koenig and E. Ernst. The possible role of hemorheology in atherothrombogenesis. Atherosclerosis, 94:93–107, 1992.CrossRefGoogle Scholar
  73. [73]
    M.H. Kroll, J.D. Hellums, L.V. McIntire, A.I. Schafer, and J.L. Moake. Platelets and shear stress. Blood, 88(5):1525–1541, 1996.Google Scholar
  74. [74]
    A.L. Kuharsky and A.L. Fogelson. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J., 80(3):1050–1074, 2001.Google Scholar
  75. [75]
    C. Lentner, editor. Geigy Scientific Tables, 8th edition, volume 3. Medical Educational Division, CIBA-GEIGY Corporation, 1984.Google Scholar
  76. [76]
    L.B. Leverett, J.D. Hellums, C.P. Alfrey, and E.C. Lynch. Red blood cell damage by shear stress. Biophysical Journal, 12(3):257–273, 1972.Google Scholar
  77. [77]
    P. Libby, P.M. Ridker, and A. Maseri. Inflammation and Atherosclerosis. Circulation, 105:1135–1143, 2002.CrossRefGoogle Scholar
  78. [78]
    M.A. Lichtman. Rheology of leukocytes, leukocyte suspensions, and blood in leukemia. Possible relationship to clinical manifestations. J. Clin. Invest., 52(2):350–358, 1973.CrossRefGoogle Scholar
  79. [79]
    G.D.O. Lowe. Blood viscosity and cardiovascular disease. Thromb. Haemost., 67(5):494–498, 1992.Google Scholar
  80. [80]
    G.D.O. Lowe, Ed., Clinical Blood Rheology, Vol. I and II. CRC Press, Boca Raton, Florida, 1998.Google Scholar
  81. [81]
    G.D.O. Lowe and J.C. Barbenel. Plasma and blood viscosity. In:Clinical Blood Rheology, Vol. I, G.D.O. Lowe, Ed., CRC Press, Boca Raton, Florida, 1998, pp. 11–4Google Scholar
  82. [82]
    C.W. Macosko. Rheology: Principles, Measurements and Applications. VCH Publishers, Inc., 1994.Google Scholar
  83. [83]
    N. Maeda, M. Seike, Kume, T. Takaku, T. and T. Shiga. Fibrinogen-induced erythrocyte aggregation: erythrocyte-binding site in the fibrinogen molecule. Biochimica Biophysica Acta, 904(1):81–91, 1987.CrossRefGoogle Scholar
  84. [84]
    E.W. Merrill. Rheology of blood. Physiol. Rev., 49(4):863–888, 1969.Google Scholar
  85. [85]
    E.W. Merrill, G.C. Cokelet, A. Britten, and R.E. Wells. Non-Newtonian rheology of human blood.-Effect of fibrinogen deduced by “subtraction”. Circulat. Res., 13:48–55, 1963.Google Scholar
  86. [86]
    E.W. Merrill, E.R. Gilliland, G. Cokelet, H. Shin, A. Britten, and R.E. Wells, Jr.. Rheology of human blood, near and at zero flow. Effects of temperature and hematocrit level. Biophys. J., 3:199–213, 1963.CrossRefGoogle Scholar
  87. [87]
    V. Micheli, A. Taddeo, A.L. Vanni, L. Pecciarini, M. Massone, and M.G. Ricci. Distribuzione in gradiente di densita’ degli eritrociti umani: differenze lagate al sesso. Boll. Soc. Italiana Biol. Speriment., LX(3):665–671, 1984.Google Scholar
  88. [88]
    T. Mizuno, T. Tsukiya, Y. Taenaka, E. Tatsumi, T. Nishinaka, H. Ohnishi, M. Oshikawa, K. Sato, K. Shioya, Y. Takewa, and H. Takano. Ultrastructural alterations in red blood cell membranes exposed to shear stress. ASAIO Journal, 48(6):668–670, 2002.CrossRefGoogle Scholar
  89. [89]
    P.C.F. MØller, J. Mewis, and D. Bonn. Yield stress and thixotropy: on the difficulty of measuring yield stress in practice. Soft Matter, 2:274–288, 2006.CrossRefGoogle Scholar
  90. [90]
    M.F. Muldoon, T.B. Herbert, S.M. Patterson, M.V. Kameneva, R. Raible, and S.B. Manuck. Effects of acute psychological stress on serum lipids, hemoconcentration and blood viscosity. Arch. Intern. Med., 155(6):615–620, 1995.CrossRefGoogle Scholar
  91. [91]
    Q.D. Nguyen and D.V. Boger. Measuring the flow properties of yield stress fluids. Annu. Rev. Fluid Mech., 24:47–88, 1992.CrossRefGoogle Scholar
  92. [92]
    University of Cape Town Electron Microscope Unit. Web site: Retrieved December 9, 2006, from, 2006.
  93. [93]
    S. Oka. An approach to a unified theory of flow behavior of time independent non-Newtonian suspensions. Jap. J. Appl. Physics, 10(3):287–291, 1971.CrossRefGoogle Scholar
  94. [94]
    A.A. Palmer and H.J. Jedrzejczyk. The influence of rouleaux on the resistance to flow through capillary channels at various shear rates. Biorheology, 12:265–270, 1975.Google Scholar
  95. [95]
    W.M. Phillips and S. Deutsch. Toward a constitutive equation for blood. Biorheology, 12:383–389, 1975.MathSciNetGoogle Scholar
  96. [96]
    C. Picart. Rhéometrie de cisaillement et microstructure du sang: applications cliniques. Thèse de Génie Biologique et Medical. PhD thesis, Université Joseph Fourier, Grenoble, France, 1997.Google Scholar
  97. [97]
    C. Picart, J.-M. Piau, H. Galliard, and P. Carpentier. Blood low shear rate rheometry: influence of fibrinogen level and hematocrit on slip and migrational effects. Biorheology, 35:335–353, 1998.CrossRefGoogle Scholar
  98. [98]
    C. Picart, J.-M. Piau, H. Galliard, and P. Carpentier. Human blood shear yield stress and its hematocrit dependence. J. Rheol., 42(1):1–12, 1998.CrossRefGoogle Scholar
  99. [99]
    A.S. Popel and P.C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech., 37:43–69, 2005.MathSciNetCrossRefGoogle Scholar
  100. [100]
    A.R. Pries, D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol., 263:H1770–H1778, 1992.Google Scholar
  101. [101]
    K.R. Rajagopal and A.R. Srinivasa. A thermodynamic framework for rate type fluid models. J. Non-Newtonian Fluid Mech., 88(3):207–227, 2000.CrossRefMATHGoogle Scholar
  102. [102]
    P.W. Rand, E. Lacombe, H.E. Hunt, and W.H. Austin. Viscosity of normal human blood under normothermic and hypothermic conditions. J. Appl. Physiol., 19(1):117–122, 1964.Google Scholar
  103. [103]
    M. Reiner and G.W. Scott Blair. The flow of blood through narrow tubes. Nature, 1843:354–355, 1959.CrossRefGoogle Scholar
  104. [104]
    E. Richardson. Deformation and haemolisys of red cells in shear flow. Proc. R. Soc. Lond., A.338:129–153, 1974.MATHGoogle Scholar
  105. [105]
    P. Riha, F. Liao, and J.F. Stoltz. Effect of fibrin polymerzation on flow properties of coagulating blood. J. Biol. Phys., 23:121–128, 1997.CrossRefGoogle Scholar
  106. [106]
    P. Riha, X. Wang, F. Liao, and J.F. Stoltz. Elasticity and fracture strain of whole blood clots. Clin Hemorheol and Microcirc, 21(1):45–49, 1999.Google Scholar
  107. [107]
    A. Robertson. Review of relevant continuum mechanics. In Hemodynamical Flows. Modeling, Analysis and Simulation. Oberwolfach-Seminars, Vol. 37, p. 1–62. Birkhäuser Verlag, 2008.Google Scholar
  108. [108]
    M.C. Roco, editor. Particulate Two-Phase Flow. Series in Chemical Engineering. Butterworth-Heinemann Publ., 1993.Google Scholar
  109. [109]
    C.M. Rodkiewicz, P. Sinha, and J.S. Kennedy. On the application of a constitutive equation for whole human blood. J. Biomech. Eng., 112:198–206, 1990.CrossRefGoogle Scholar
  110. [110]
    A.H. Sacks, K.R. Raman, and J.A. Burnell, and E.G. Tickner. Report no. 119. Technical report, VIDYA, 1963.Google Scholar
  111. [111]
    M. Schenone, B.C. Furie, and B. Furie. The blood coagulation cascade. Curr. Opin. Hematol., 11(4):272–277, 2004.CrossRefGoogle Scholar
  112. [112]
    H. Schmid-Schönbein, J. Barroso-Aranda, and R. Chavez-Chavez. Microvascular leukocyte kinetics in the flow state. In H. Boccalon, editor, Vascular Medicine, pages 349–352. Elsevier, 1993.Google Scholar
  113. [113]
    H. Schmid-Schönbein. Microrheology of erythrocytes, blood viscosity and the distribution of blood flow in the microcirculation. Internat. Rev. Physiol. Cardiovasc. Physiol. II, 9:1–62, 1976.Google Scholar
  114. [114]
    H. Schmid-Schönbein, E. Volger and H.J. Klose. Microrheology and light transmission of blood. II The photometric quantification of red cell aggregation formation and dispersion in flow. Pflüggers Arch, 333:140–155, 1972.CrossRefGoogle Scholar
  115. [115]
    H. Schmid-Schönbein, R. Wells, and J. Goldstone. Model experiments in red cell rheology: the mammalian red cell as a fluid drop. In H.H. Hartert and A.L. Copley, editors, Theoretical and Clinical Hemorheology. Springer-Verlag, 1971.Google Scholar
  116. [116]
    H. Schmid-Schönbein and R.E. Wells. Rheological properties of human erythrocytes and their influence upon the “anomalous” viscosity of blood. Ergeb. Physiol., 63:146–219, 1971.CrossRefGoogle Scholar
  117. [117]
    H. Schmid-Schönbein, R. Wells, and E.R. Schildkraut. Microscopy and viscometry of blood flowing under uniform shear (rheoscopy). J. Appl. Physiol., 26:674–678, 1969.Google Scholar
  118. [118]
    H. Schmid-Schönbein and R. Wells. Fluid drop-like transition of erythrocytes under shear. Science, 165:288–291, 1969.CrossRefGoogle Scholar
  119. [119]
    R.F. Schmidt and G. Thews, editors. Human Physiology. Springer-Verlag, 1983.Google Scholar
  120. [120]
    G.W. Scott Blair. An equation for the flow of blood, plasma and serum through glass capillaries. Nature, 183:613–614, 1959.CrossRefGoogle Scholar
  121. [121]
    T. Shiga, K. Imaizumi, N. Harada, and M. Sekiya. Kinetics of rouleaux formation using TV image analyzer. I. Human erythrocytes. Am. J. Physiol., 245:H252–H258, 1983.Google Scholar
  122. [122]
    R. Skalak, P.H. Chen, and S. Chien. Effect of hematocrit and rouleaux on apparent viscosity in capillaries. Biorheology, 9(2):67–82, 1972.Google Scholar
  123. [123]
    E.N. Sorensen, G.W. Burgreen, W.R. Wagner, and J.F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann Biomed Eng, 27(4):436–448, 1999.CrossRefGoogle Scholar
  124. [124]
    J.-F. Stoltz, M. Singh, and P. Riha. Hemorheology in Practice. IOS Press, 1999.Google Scholar
  125. [125]
    H.O. Stone, H.K. Thompson, Jr., and K. Schmidt-Nielsen. Influence of erythrocytes on blood viscosity. Amer. J. Physiol., 214(4):913–918, 1968.Google Scholar
  126. [126]
    G.B. Thurston. Period flow through circular tubes. The Journal of the Acoustical Society of America, 24(6):653–656, 1952.CrossRefGoogle Scholar
  127. [127]
    G.B. Thurston. Measurement of the acoustic impedence of a viscoelastic fluid in a circular tube. The Journal of the Acoustical Society of America, 33(8):1091–1095, 1961.CrossRefGoogle Scholar
  128. [128]
    G.B. Thurston. Frequency and shear rate dependence of viscoelasticity of human blood. Biorheology, 10:375–381, 1973.Google Scholar
  129. [129]
    G.B. Thurston. Elastic effects in pulsatile blood flow. Microvasc. Res., 9:145–157, 1975.CrossRefGoogle Scholar
  130. [130]
    G.B. Thurston. Effects of hematocrit on blood viscoelasticity and in establishing normal values. Biorheology, 15:239–249, 1978.Google Scholar
  131. [131]
    G.B. Thurston. Erythrocyte rigidity as a factor in blood rheology: Viscoelastic dilatancy. J. Rheology, 23(6):703–719, 1979.CrossRefGoogle Scholar
  132. [132]
    G.B. Thurston. Significance and methods of measurement of viscoselastic behavior of blood. In D.R. Gross and E.H.C. Hwang, editors, The Rheology of Blood, Blood Vessels and Associated Tissue, pages 236–256. Sijthoff and Noordhoff, 1981.Google Scholar
  133. [133]
    A. Gaspar-Rosas and G.B. Thurston. Erythrocyte aggregate rheology by transmitted and reflected light. Biorheology, 25:471–487, 1988.Google Scholar
  134. [134]
    G.B. Thurston. Viscoelastic properties of blood and blood analogs. Advances in Hemodynamics and Hemorheology, 1:1–30, 1996.Google Scholar
  135. [135]
    S. Usami, S. Chien, and M.I. Gregersen. Viscometric characteristics of blood of the elephant, man, dog, sheep, and goat. Am. J. Physiol., 217(3):884–890, 1969.Google Scholar
  136. [136]
    S. Usami, R.G. King, S. Chien, R. Skalak, C.R. Huang, and A.L. Copley. Microcinephotographic studies of red cell aggregation in steady and oscillatory shear-A note. Biorheology, 12(5):323–325, 1975.Google Scholar
  137. [137]
    F.J. Walburn and D.J. Schneck. A constitutive equation for whole human blood. Biorheology, 13:201–210, 1976.Google Scholar
  138. [138]
    N.-T. Wang and A.L. Fogelson. Computational methods for continuum models of platelet aggregation. J. Comput. Phys., 151(2):649–675, 1999.MathSciNetCrossRefMATHGoogle Scholar
  139. [139]
    R.E. Wells, T.H. Gawronski, P.J. Cox, and R.D. Perera. Influence of fibrinogen on flow properties of erythrocyte suspensions. Amer. J. Physiol., 207:1035–1040, 1964.Google Scholar
  140. [140]
    S.R.F. Whittaker and F.R. Winton. The apparent viscosity of blood flowing in the isolated hindlimb of the dog, and its variation with corpuscular concentration. J. Physiol., 78(4):339–369, 1933.Google Scholar
  141. [141]
    R.L. Whitmore. Rheology of the Circulation. Pergamon Press, 1968.Google Scholar
  142. [142]
    M.M. Wintrobe. Clinical Hematology. Lea & Febiger, 6th edition, 1967.Google Scholar
  143. [143]
    D.M. Wootton, C.P. Markou, S.R. Hanson, and D.N. Ku. A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann Biomed Eng, 29(4):321–329, 2001.CrossRefGoogle Scholar
  144. [144]
    K.K. Yeleswarapu, M.V. Kameneva, K.R. Rajagopal, and J.F. Antaki. The flow of blood in tubes: Theory and experiment. Mechanics Research Communications, 25(3):257–262, 1998.CrossRefMATHGoogle Scholar
  145. [145]
    A.L. Zydney, J.D. Oliver, and C.K. Colton. A constitutive equation for the viscosity of stored red cell suspensions: Effect of hematocrit, shear rate, and suspending phase. J. Rheol., 35:1639–1680, 1991.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Anne M. Robertson
    • 1
  • Adélia Sequeira
    • 2
  • Marina V. Kameneva
    • 3
  1. 1.Department of Mechanical Engineering and Materials Science McGowan Institute for Regenerative Medicine Center for Vascular Remodeling and Regeneration (CVRR)University of PittsburghPittsburghUSA
  2. 2.Departamento de Matemática Centro de Matemática e AplicaçõesInstituto Superior TécnicoLisboaPortugal
  3. 3.McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations