Advertisement

Functional Identities in (Semi)prime Rings

Part of the Frontiers in Mathematics book series (FM)

Abstract

Up until now we have seen how to construct new d-free sets from given ones (Chapter 3) and have analyzed certain functional identities acting on d-free sets (Chapter 4). But, with the exception of the results from Chapter 2, we have yet to show the existence of important classes of d-free sets. Our main purpose in this chapter is to remedy this situation. Our success in this endeavor has chiefly been in the case of various subsets of a prime ring A (considered as a subring of its maximal left quotient ring Q). These results will be presented in Section 5.2. They will be obtained as corollaries to the results from Section 5.1 which establish the d-freeness of rings that contain elements satisfying certain technical conditions — specifically, the so-called fractional degree of such elements must be ≥ d. In Section 5.3 we shall see that the basic result on d-freeness of prime rings can be extended to a more general (and truly more entangled) semiprime setting. Section 5.4 is devoted to commuting traces of multiadditive maps on prime rings; the definitive result is established in the case of biadditive maps. The chapter ends with Section 5.5 which studies generalized functional identities in prime rings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature and Comments

  1. [6]
    P. Ara, M. Mathieu, An application of local multipliers to centralizing mappings of C*-algebras, Quart. J. Math. 44 (1993), 129–138.zbMATHCrossRefGoogle Scholar
  2. [7]
    P. Ara, M. Mathieu, Local multipliers of C*-algebras, Springer, 2003.Google Scholar
  3. [12]
    R. Banning, M. Mathieu, Commutativity preserving mappings on semiprime rings, Comm. Algebra 25 (1997), 247–265.zbMATHCrossRefGoogle Scholar
  4. [16]
    K. I. Beidar, On functional identities and commuting additive mappings, Comm. Algebra 26 (1998), 1819–1850.zbMATHCrossRefGoogle Scholar
  5. [17]
    K. I. Beidar, M. Brešar, M. A. Chebotar, Generalized functional identities with (anti-)automorphisms and derivations on prime rings, I, J. Algebra 215 (1999), 644–665.zbMATHCrossRefGoogle Scholar
  6. [18]
    K. I. Beidar, M. Brešar, M.A. Chebotar, Functional identities on upper triangular matrix algebras, J. Math. Sci. (New York) 102 (2000), 4557–4565.zbMATHGoogle Scholar
  7. [19]
    K. I. Beidar, M. Brešar, M.A. Chebotar, Functional identities revised: the fractional and the strong degree, Comm. Algebra 30 (2002), 935–969.zbMATHCrossRefGoogle Scholar
  8. [20]
    K. I. Beidar, M. Brešar, M.A. Chebotar, Functional identities with r-independent coefficients, Comm. Algebra 30 (2002), 5725–5755.zbMATHCrossRefGoogle Scholar
  9. [22]
    K. I. Beidar, M. Brešar, M.A. Chebotar, W. S. Martindale 3rd, On functional identities in prime rings with involution II, Comm. Algebra 28 (2000), 3169–3183.zbMATHCrossRefGoogle Scholar
  10. [27]
    K. I. Beidar, S.-C. Chang, M.A. Chebotar, Y. Fong, On functional identities in left ideals of prime rings, Comm. Algebra 28 (2000), 3041–3058.zbMATHCrossRefGoogle Scholar
  11. [29]
    K. I. Beidar, M.A. Chebotar, On functional identities and d-free subsets of rings I, Comm. Algebra 28 (2000), 3925–3951.zbMATHCrossRefGoogle Scholar
  12. [30]
    K. I. Beidar, M.A. Chebotar, On functional identities and d-free subsets of rings II, Comm. Algebra 28 (2000), 3953–3972.zbMATHCrossRefGoogle Scholar
  13. [35]
    K. I. Beidar, Y. Fong, P.-H. Lee, T.-L. Wong, On additive maps of prime rings satisfying Engel condition, Comm. Algebra 25 (1997), 3889–3902.zbMATHCrossRefGoogle Scholar
  14. [38]
    K. I. Beidar, W. S. Martindale 3rd, On functional identities in prime rings with involution, J. Algebra 203 (1998), 491–532.zbMATHCrossRefGoogle Scholar
  15. [39]
    K. I. Beidar, W. S. Martindale 3rd, A.V. Mikhalev, Lie isomorphisms in prime rings with involution, J. Algebra 169 (1994), 304–327.zbMATHCrossRefGoogle Scholar
  16. [40]
    K. I. Beidar, W. S. Martindale 3rd, A.V. Mikhalev, Rings with generalized identities, Marcel Dekker, Inc., 1996.Google Scholar
  17. [48]
    D. Benkoviç, D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280 (2004), 797–824.zbMATHCrossRefGoogle Scholar
  18. [54]
    M. Brešar, Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc. 111 (1991), 501–510.CrossRefGoogle Scholar
  19. [55]
    M. Brešar, On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), 641–649.CrossRefGoogle Scholar
  20. [56]
    M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385–394.CrossRefGoogle Scholar
  21. [58]
    M. Brešar, Commuting traces of biadditive mappings, commutativitypreserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525–546.CrossRefGoogle Scholar
  22. [59]
    M. Brešar, On certain pairs of functions of semiprime rings, Proc. Amer. Math. Soc. 120 (1994), 709–713.CrossRefGoogle Scholar
  23. [60]
    M. Brešar, On generalized biderivations and related maps, J. Algebra 172 (1995), 764–786.CrossRefGoogle Scholar
  24. [61]
    M. Brešar, Functional identities of degree two, J. Algebra 172 (1995), 690–720.CrossRefGoogle Scholar
  25. [62]
    M. Brešar, Applying the theorem on functional identities, Nova Journal of Mathematics, Game Theory, and Algebra 4 (1995), 43–54.Google Scholar
  26. [67]
    M. Brešar, The range and kernel inclusion of algebraic derivations and commuting maps, Quart. J. Math. 56 (2005), 31–41.CrossRefGoogle Scholar
  27. [69]
    M. Brešar, M. Cabrera, A. R. Villena, Functional identities in Jordan algebras: Associating maps, Comm. Algebra 30 (2002), 5241–5252.Google Scholar
  28. [71]
    M. Brešar, M. A. Chebotar, On a certain functional identity in prime rings, Comm. Algebra 26 (1998), 3765–3782.CrossRefGoogle Scholar
  29. [72]
    M. Brešar, M. A. Chebotar, On a certain functional identity in prime rings, II, Beitr. Alg. Geom. 43 (2002), 333–338.Google Scholar
  30. [73]
    M. Brešar, D. Eremita, A. R. Villena, Functional identities in Jordan algebras: Associating traces and Lie triple isomorphisms, Comm. Algebra 31 (2003), 1207–1234.CrossRefGoogle Scholar
  31. [77]
    M. Brešar, W. S. Martindale 3rd, C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993), 342–357.CrossRefGoogle Scholar
  32. [79]
    M. Brešar, C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45 (1993), 695–708.Google Scholar
  33. [81]
    M. Brešar, C. R. Miers, Commuting maps on Lie ideals, Comm. Algebra 23 (1995), 5539–5553.CrossRefGoogle Scholar
  34. [84]
    M. Brešar, P. Šemrl, Commuting traces of biadditive maps revisited, Comm. Algebra 31 (2003), 381–388.CrossRefGoogle Scholar
  35. [88]
    M. A. Chebotar, On generalized functional identities in prime rings, J. Algebra 202 (1998), 655–670.zbMATHCrossRefGoogle Scholar
  36. [89]
    M. A. Chebotar, On functional identities of degree 2 in prime rings, Fundam. Prikl. Mat. 6 (2000), 923–938.zbMATHGoogle Scholar
  37. [99]
    W.-S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), 117–127.zbMATHCrossRefGoogle Scholar
  38. [102]
    D. Eremita, A functional identity with an automorphism in semiprime rings, Algebra Colloq. 8 (2001), 301–306.zbMATHGoogle Scholar
  39. [103]
    D. Eremita, On some special generalized functional identities, Taiwanese J. Math. 8 (2004), 191–202.zbMATHGoogle Scholar
  40. [108]
    M. FoŠner, On the extended centroid of prime associative superalgebras with applications to superderivations, Comm. Algebra 32 (2004), 689–705.CrossRefGoogle Scholar
  41. [128]
    E. Kissin, V. S. Shulman, Range-inclusive maps on C*-algebras, Quart. J. Math. 53 (2002), 455–465.zbMATHCrossRefGoogle Scholar
  42. [137]
    T.-C. Lee, Derivations and centralizing maps on skew elements, Soochow J. Math. 24 (1998), 273–290.zbMATHGoogle Scholar
  43. [139]
    P.-H. Lee, T.-K. Lee, Linear identities and commuting maps in rings with involution, Comm. Algebra 25 (1997), 2881–2895.zbMATHCrossRefGoogle Scholar
  44. [140]
    P.-H. Lee, J.-S. Lin, R.-J. Wang, T.-L. Wong, Commuting traces of multiadditive mappings, J. Algebra 193 (1997), 709–723.zbMATHCrossRefGoogle Scholar
  45. [141]
    T.-K. Lee, σ-commuting mappings in semiprime rings, Comm. Algebra 29 (2001), 2945–2951.zbMATHCrossRefGoogle Scholar
  46. [142]
    T.-K. Lee, T.-C. Lee, Commuting additive mappings in semiprime rings, Bull. Inst. Math. Acad. Sinica 24 (1996), 259–268.zbMATHGoogle Scholar
  47. [158]
    M. Mathieu, Where to find the image of a derivation, Banach Center Publ. 30 (1994), 237–249.Google Scholar
  48. [182]
    E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.CrossRefGoogle Scholar
  49. [195]
    Y. Wang, The ranges of additive maps in generalized functional identities on prime rings, Comm. Algebra 30 (2002), 2897–2913.zbMATHCrossRefGoogle Scholar
  50. [198]
    T.-L. Wong, A special functional identity in prime rings, Comm. Algebra 32 (2004), 363–377.zbMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Personalised recommendations