Skip to main content

On a Stochastic Parabolic Integral Equation

  • Chapter
Functional Analysis and Evolution Equations

Abstract

In this article we analyze the stochastic parabolic integral equation

$$ u\left( {t,x,\omega } \right) = c_\alpha t^{ - 1 + \alpha } *\Delta u + \sum\limits_{k = 1}^\infty {\smallint _0^t g^k \left( {s,x,\omega } \right)} dw_s^k , $$

where t ≥ 0, x ∈ ℝd, α ∈ (1/2, 1) and ω ∈ Ω. We take w k t ⌝ k = 1, 2, . . . to be a family of independent \( \mathcal{F}_t \) -adapted Wiener processes defined on a probability space \( \left( {\Omega ,\mathcal{F},P} \right) \) . Here \( \mathcal{F}_t \subset \mathcal{F}{\text{and }}\mathcal{F}_t \) is an increasing filtration.

By applying and modifying the method of Krylov we obtain existence and regularity results in L p -spaces, p ≥ 2.

To the memory of Günter Lumer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ph. Clément and G. Da Prato, Some results on stochastic convolutions arising in Volterra equations perturbed by noise, Rend. Mat. Acc. Lincei, ser. IX, vol. VII (1996), 147–153.

    Google Scholar 

  2. Ph. Clément, G. Da Prato and J. Prüss, White noise perturbation of the equations of linear parabolic viscoelasticity, Rend. Istit. Mat. Univ. Trieste, XXIX, (1997), 207–220.

    Google Scholar 

  3. Ph. Clément, G. Gripenberg and S.-O. Londen, Schauder estimates for equations with fractional derivatives, Trans. A.M.S., 352 (2000), 2239–2260.

    Article  MATH  Google Scholar 

  4. Ph. Clément and S.-O. Londen, Regularity aspects of fractional evolution equations, Rend. Istit. Mat. Univ. Trieste, XXXI, (2000), 19–30.

    Google Scholar 

  5. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge University Press, 1990.

    Google Scholar 

  6. P. Grisvard, Commutativité de deux foncteurs d’interpolation et applications, J. Math. pures et appl., 45 (1966), 143–206.

    MATH  MathSciNet  Google Scholar 

  7. T. Hytönen, Private communication.

    Google Scholar 

  8. C. Kaiser and L. Weis, Wavelet transform for functions with values in UMD-spaces, manuscript.

    Google Scholar 

  9. N. Kalton, J. v. Neerven, M. Veraar, and L. Weis, Embedding vector-valued Besov spaces into spaces of γ-radonifying operators, to appear.

    Google Scholar 

  10. N.V. Krylov, A parabolic Littlewood-Paley inequality with applications to parabolic equations, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 4 (1994), 355–364.

    MATH  Google Scholar 

  11. N.V. Krylov, An analytic approach to SPDEs. In Stochastic Partial Differential Equations: Six Perspectives, R.A. Carmona and B. Rozovskii, eds. A.M.S. Mathematical Surveys and Monographs vol. 64 (1999), pp. 185–242.

    Google Scholar 

  12. Ph. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, 1990.

    Google Scholar 

  13. J. Prüss, Poisson estimates and maximal regularity for evolutionary integral equations in L p -spaces, Rend. Istit. Mat. Univ. Trieste, XXVIII, (1997), 287–321.

    Google Scholar 

  14. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North Holland, 1978.

    Google Scholar 

  15. R. Zacher, Quasilinear parabolic problems with nonlinear boundary conditions, Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg, 2003.

    Google Scholar 

  16. R. Zacher, Maximal regularity of type L p for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79–103.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Desch, W., Londen, SO. (2007). On a Stochastic Parabolic Integral Equation. In: Amann, H., Arendt, W., Hieber, M., Neubrander, F.M., Nicaise, S., von Below, J. (eds) Functional Analysis and Evolution Equations. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7794-6_10

Download citation

Publish with us

Policies and ethics