Advertisement

Inhibitors that target gp120-CD4 interactions

  • Pin-fang Lin
  • John Kadow
  • Louis Alexander
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

The treatment of HIV-1 is moving towards chronic management of the disease, e.g., by combining three-drug regimens to reduce the number of dosing units. However, four classes (nucleoside/nucleotide and non-nucleoside reverse transcriptase, protease, and fusion inhibitors) including 24 approved drugs are still inadequate and treatment failures continue to occur. Factors contributing to such failures include: the emergence of drug-resistant strains, suboptimal exposure, and poor adherence that is mainly attributable to side effects. Moreover, the transmission of drug-resistant viruses is expected to rise over time. For these reasons, there is a pressing need for new classes of antiretroviral agents that are effective against HIV-1 resistant or insensitive to current drugs and that have the potential for co-formulation in convenient dosing regimens.

Keywords

Entry Inhibitor Gp120 Core Unliganded Gp120 Viral Load Decline sCD4 Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393: 648–659PubMedCrossRefGoogle Scholar
  2. 2.
    Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280: 1884–1888PubMedCrossRefGoogle Scholar
  3. 3.
    Chen B, Vogan EM, Gong H, Skehel JJ, Wiley DC, Harrison SC (2005) Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 433: 834–841PubMedCrossRefGoogle Scholar
  4. 4.
    Hanna G, Lalezari J, Hellinger J, Wohl D, Masterson T, Fiske W, Kadow J, Lin P, Giordano M, Colonno R, Grasela D (2004) Antiviral activity, safety, and tolerability of a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-488043, in HIV-1-infected subjects. In: 11th Conference on Retroviruses and Opportunistic Infections, San Francisco, abstract no. 141Google Scholar
  5. 5.
    Jacobson JM, Israel RJ, Lowy I, Ostrow NA, Vassilatos LS, Barish M., Tran DN, Sullivan BM, Ketas TJ, O’Neill TJ, Nagashima KA, Huang W, Petropoulos CJ, Moore JP, Maddon PJ, Olson WC (2004) Treatment of advanced human immunodeficiency virus type 1 disease with the viral entry inhibitor PRO 542. Antimicrob Agents Chemother 48: 423–429PubMedCrossRefGoogle Scholar
  6. 6.
    Lin P-F, Blair W, Wang T, Spicer T, Guo Q, Zhou N, Gong Y-F, Wang H-GH, Rose R, Yamanaka G et al. (2003) A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl Acad Sci USA 100: 11013–11018PubMedCrossRefGoogle Scholar
  7. 7.
    Wang T, Zhang Z, Wallace OB, Deshpande M, Fang H, Yang Z, Zadjura LM, Tweedie DL, Huang S, Zhao F et al. (2003) Discovery of 4-Benzoyl-1-{(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl}-2-(R)-methylpiperazine (BMS-378806): A novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J Med Chem 46: 4236–4239PubMedCrossRefGoogle Scholar
  8. 8.
    Guo Q, Ho HT, Dicker I, Fan L, Zhou N, Friborg J, Wang T, McAuliffe BV, Wang, HG, Rose RE et al. (2003) Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120-CD4 interactions. J Virol 77: 10528–10536PubMedCrossRefGoogle Scholar
  9. 9.
    Ho HT, Fan L, Nowicka-Sans B, McAuliffe B, Li CB, Yamanaka G, Zhou N, Fang H, Dicker I, Dalterio R et al. (2006) Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events. J Virol 80: 4017–4025PubMedCrossRefGoogle Scholar
  10. 10.
    Si Z, Madani N, Cox JM, Chruma JJ, Klein JC, Schon A, Phan N, Wang L, Biorn AC, Cocklin S et al. (2004) Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc Natl Acad Sci USA 101: 5036–5041.PubMedCrossRefGoogle Scholar
  11. 11.
    Madani N, Perdigoto AL, Srinivasan K, Cox JM, Chruma JJ, LaLonde J, Head M, Smith AB III, Sodroski JG (2004) Localized changes in the gp120 envelope glycoprotein confer resistance to human immunodeficiency virus entry inhibitors BMS-806 and #155. J Virol 78: 3742–3752PubMedCrossRefGoogle Scholar
  12. 12.
    Zhao Q, Ma L, Jiang S, Lu H, Liu S, He Y, Strick N, Neamati N, Debnath AK (2005) Identification of N-phenyl-N’-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology 339: 213–225PubMedCrossRefGoogle Scholar
  13. 13.
    Middleton DS, Mowbray CE, Stephenson PT, Williams DH (2005) Preparation of piperazine derivatives for use in pharmaceutical compositions for the treatment of HIV infection. PCT Int Appl WO 2005016344Google Scholar
  14. 14.
    Fenwick DR, Middleton DS, Stephenson PT, Tran TD, Williams DH (2005) Preparation of piperazine and piperidine derivatives as anti-HIV-agents. PCT Int Appl WO 2005121094Google Scholar
  15. 15.
    Srivastava IK, Sharma V, Barnett SW, Ulmer J (2005) Env polypeptide complexed with CD4 mimetics to induce production of neutralizing antibodies against AIDS and disorders related to HIV infection. PCT Int Appl WO 2005121175Google Scholar
  16. 16.
    Wang J, Le N, Heredia A, Song H, Redfield R, Wang LX (2005) Modification and structure-activity relationship of a small molecule HIV-1 inhibitor targeting the viral envelope glycoprotein gp120. Org Biomol Chem 3: 1781–1786PubMedCrossRefGoogle Scholar
  17. 17.
    Trkola A, Pomales A, Yuan H, Korber B, Maddon P, Allaway G, Katinger H, Barbas C 3rd, Burton D, Ho D (1995) Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol 69: 6609–6617PubMedGoogle Scholar
  18. 18.
    Jacobson JM, Lowy I, Fletcher CV, O’Neill TJ, Tran DN, Ketas TJ, Trkola A, Klotman ME, Maddon PJ, Olson WC, Israel RJ (2000) Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis 182: 326–329PubMedCrossRefGoogle Scholar
  19. 19.
    Dey B, Del Castillo CS, Berger EA (2003) Neutralization of human immunodeficiency virus type 1 by sCD4-17b, a single-chain chimeric protein, based on sequential interaction of gp120 with CD4 and coreceptor. J Virol 77: 2859–2865PubMedCrossRefGoogle Scholar
  20. 20.
    Vita C, Drakopoulou E, Vizzavona J, Rochette S, Martin L, Menez A, Roumestand C, Yang YS, Ylisastigui L, Benjouad A, Gluckman JC (1999) Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc Natl Acad Sci USA 96: 13091–13096PubMedCrossRefGoogle Scholar
  21. 21.
    Martin L, Stricher F, Misse D, Sironi F, Pugniere M, Barthe P, Prado-Gotor R, Freulon I, Magne X, Roumestand C et al. (2003) Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat Biotechnol 21: 71–76PubMedCrossRefGoogle Scholar
  22. 22.
    Li H, Song H, Heredia A, Le N, Redfield R, Lewis George K, Wang LX (2004) Synthetic bivalent CD4-mimetic miniproteins show enhanced anti-HIV activity over the monovalent miniprotein. Bioconjug Chem 15: 783–789PubMedCrossRefGoogle Scholar
  23. 23.
    Samanen J (1998) Preparation of modified peptides and cyclopeptides as CD4 mimetic ligands for inhibiting HIV. PCT Int Appl WO 9826660 A1Google Scholar
  24. 24.
    Li C, Dowd CS, Zhang W, Chaiken IM (2001) Phage randomization in a charybdotoxin scaffold leads to CD4-mimetic recognition motifs that bind HIV-1 envelope through non-aromatic sequences. J Pept Res 57: 507–518PubMedCrossRefGoogle Scholar
  25. 25.
    Binley JM, Wrin T, Korber B, Zwick MB, Wang M, Chappey C, Stiegler G, Kunert R, Zolla-Pazner S, Katinger H et al. (2004) Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78: 13232–13252PubMedCrossRefGoogle Scholar
  26. 26.
    Saphire EO, Parren PW, Pantophlet R, Zwick MB, Morris GM, Rudd PM, Dwek RA, Stanfield RL, Burton DR, Wilson IA (2001) Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293: 1155–1159PubMedCrossRefGoogle Scholar
  27. 27.
    Vermeire K, Schols D (2005) Cyclotriazadisulfonamides: promising new CD4-targeted anti-HIV drugs. J Antimicrob Chemother 56: 270–272PubMedCrossRefGoogle Scholar
  28. 28.
    Yang QE, Stephen AG, Adelsberger JW, Roberts PE, Zhu W, Currens MJ, Feng Y, Crise BJ, Gorelick RJ, Rein AR et al. (2005) Discovery of small-molecule human immunodeficiency virus type 1 entry inhibitors that target the gp120-binding domain of CD4. J Virol 79: 6122–6133PubMedCrossRefGoogle Scholar
  29. 29.
    Rishi V, Potter T, Laudeman J, Reinhart R, Silvers T, Selby M, Stevenson T, Krosky P, Stephen AG, Acharya A et al. (2005) A high-throughput fluorescence-anisotropy screen that identifies small molecule inhibitors of the DNA binding of B-ZIP transcription factors. Anal Biochem 340: 259–271PubMedCrossRefGoogle Scholar
  30. 30.
    Moore JP, Sattentau QJ, Klasse PJ, Burkly LC (1992) A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J Virol 66: 4784–4793PubMedGoogle Scholar
  31. 31.
    Reimann KA, Lin W, Bixler S, Browning B, Ehrenfels BN, Lucci J, Miakowski K, Olson D, Parish TH, Rosa MD et al. (1997) A humanized form of a CD4-specific monoclonal antibody exhibits decreased antigenicity and prolonged plasma half-life in rhesus monkeys while retaining its unique biological and antiviral properties. AIDS Res Hum Retroviruses 13: 933–943PubMedCrossRefGoogle Scholar
  32. 32.
    Kuritzkes DR, Jacobson J, Powderly WG, Godofsky E, DeJesus E, Haas F, Reimann KA, Larson JL, Yarbough PO, Curt V, Shanahan WR Jr (2004) Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J Infect Dis 189: 286–291PubMedCrossRefGoogle Scholar
  33. 33.
    Nagashima KA, Thompson DA, Rosenfield SI, Maddon PJ, Dragic T, Olson WC (2001) Human immunodeficiency virus type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion. J Infect Dis 183: 1121–1125PubMedCrossRefGoogle Scholar
  34. 34.
    Tremblay CL, Kollmann C, Giguel F, Chou TC, Hirsch MS (2000) Strong in vitro synergy between the fusion inhibitor T-20 and the CXCR4 blocker AMD-3100. J Acquir Immune Defic Syndr 25: 99–102PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2007

Authors and Affiliations

  • Pin-fang Lin
    • 1
  • John Kadow
    • 2
  • Louis Alexander
    • 1
  1. 1.Department of Virology Bristol-Myers Squibb Pharmaceutical Research InstituteWallingfordUSA
  2. 2.Department of Chemistry Bristol-Myers Squibb Pharmaceutical Research InstituteWallingfordUSA

Personalised recommendations