Skip to main content

Local Smoothness Conditions on a Function Which Guarantee Convergence of Double Walsh-Fourier Series of This Function

  • Conference paper
Wavelet Analysis and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The local smoothness conditions on a function are obtained, which guarantee convergence almost everywhere on some set of positive measure of the double Walsh-Fourier series of this function summed over rectangles.

This work was supported by grant 05-01-00206 of the Russian Foundation for Fundamental Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Stein, On Limits of Sequences of Operators. Ann. of Math. 74 (1961), 140–170.

    Article  MathSciNet  Google Scholar 

  2. S. V. Bochkarev, Everywhere Convergent Fourier Series with Respect to Walsh System and Multiplicative Systems. Uspekhi-Mat.-Nauk 59 (2004) 103–124; English transl. in Russ. Math. Surv. 59 (2004).

    MathSciNet  Google Scholar 

  3. P. Sjölin, F. Soria, Remarks on a Theorem by N.Y.Antonov. Studia Math. 158 (2003), 79–97.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. J. Fine, On the Walsh functions. Trans. Amer. Math. Soc. 65 (1949), 372–414.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Schipp, W. R. Wade, P. Simon, J. Pal, Walsh Series: An Introduction to Dyadic Harmonic Analysis. Budapest: Akad. Kiado (1990).

    MATH  Google Scholar 

  6. N. K. Bari, Trigonometric series. Fizmatgiz, Moscow, 1961; English transl.: N. Bary, A Treatise on Trigonometric Series. Vols. I, II, Pergamon Press Oxford, and Macmillan, New York, 1964.

    Google Scholar 

  7. I. L. Bloshanskii, Structural and Geometric Characteristics of Sets of Convergence and Divergence of Multiple Fourier Series of Functions which Equal Zero on Some Set. Intern. J. of Wavelets, Multiresolution and Inform. Processing 2 (2004), 187–195.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Móricz, On the Convergence of Double Orthogonal Series. Anal. Math. 2 (1976), 287–304.

    Article  MathSciNet  Google Scholar 

  9. R. D. Getsadze, A Continuous Function with Multiple Fourier Series with Respect to the Walsh-Paley System which is Divergent Almost Everywhere. Mat.Sb. 128 (1985), 269–286; English transl. in Math. USSR-Sb. 56 (1987).

    MathSciNet  Google Scholar 

  10. E. M. Nikishin, Weyl Multipliers for Multiple Fourier Series. Mat.Sb. 89 (1972), 340–348; English transl. in Math. USSR-Sb. 89 (1972).

    MathSciNet  Google Scholar 

  11. P. Billard, Sur la Convergence Presque Partout des Series de Fourier-Walsh des Fonctions de l’Éspace L 2 ([0, 1]). Stud. Math. 28 (1966–1967) 363–388.

    MathSciNet  Google Scholar 

  12. S. K. Bloshanskaya, I. L. Bloshanskii, Generalized Localization for Multiple Walsh-Fourier Series of Functions in L p, p ≥ 1. Mat.Sb. 186 (1995), 21–36; English transl. in Math. USSR-Sb. 186 (1995).

    MathSciNet  Google Scholar 

  13. S. K. Bloshanskaya, I. L. Bloshanskii, Weak Generalized Localization for Multiple Walsh-Fourier Series of Functions from L p, p ≥ 1. Trudy Mat. Inst. im. Steklova 214 (1997), 83–106; English transl. in Proc. Steklov Inst. Math. 214 (1996).

    Google Scholar 

  14. I. L. Bloshanskii, Generalized Localization Almost Everywhere and Convergence of Double Fourier Series. Dokl. Akad. Nauk SSSR 242 (1978), 11–13; English transl. in Soviet Math. Dokl. 19 (1978).

    MathSciNet  Google Scholar 

  15. S. K. Bloshanskaya, I. L. Bloshanskii, Generalized and Weak Generalized Localizations for Multiple Walsh-Fourier Series of Functions in L p, p ≥ 1. Dokl. Ross. Akad. Nauk 332 (1993), 549–552; English transl. in Russian Acad. Sci. Dokl. Math. 48 (1994).

    Google Scholar 

  16. S. K. Bloshanskaya, I. L. Bloshanskii, On the Validity of Generalized Localization for Double Walsh-Fourier Series of Functions in L(log+ L)2. Intern. Conf. on Teory of Approx. Of Functions. Abstracts of papers, vol.1, Kaluga (1996), 34–36; (Russian)

    Google Scholar 

  17. S. K. Bloshanskaya, I. L. Bloshanskii, T. Yu. Roslova, Generalized Localization for Double Trigonometric Fourier Series and Walsh-Fourier Series of Functions in L(log+ L)(log+log+ L). Mat.Sb. 189 (1998), 21–46; English transl. in Math. USSR-Sb. 189(1998).

    MathSciNet  Google Scholar 

  18. S. K. Bloshanskaya, The Criteria of Weak Generalized Localization for multiple Walsh-Fourier series of Functions in Orlicz Classes. Intern. J. of Wavelets, Multiresolution and Inform. Processing 2 (2004), 430–435.

    MathSciNet  Google Scholar 

  19. I. L. Bloshanskii, On Sequence of Linear Operators. Trudy Mat.Inst. im. Steklova 201 (1992), 43–78; English transl. in Proc. Steklov Inst. Math. 2 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Bloshanskaya, S.K., Bloshanskii, I.L. (2006). Local Smoothness Conditions on a Function Which Guarantee Convergence of Double Walsh-Fourier Series of This Function. In: Qian, T., Vai, M.I., Xu, Y. (eds) Wavelet Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7778-6_1

Download citation

Publish with us

Policies and ethics