Advertisement

Singularity Exchange at the Frontier of the Space

  • Dirk Siersma
  • Mihai Tibăr
Conference paper
  • 511 Downloads
Part of the Trends in Mathematics book series (TM)

Abstract

In deformations of polynomial functions one may encounter “singularity exchange at infinity” when singular points disappear from the space and produce “virtual” singularities which have an influence on the topology of the limit polynomial. We find several rules of this exchange phenomenon, in which the total quantity of singularity turns out to be not conserved in general.

Keywords

Deformation of polynomials singularities at infinity non-conservation of number of vanishing cycles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. A’Campo, Le nombre de Lefschetz d’une monodromie, Indag. Math. 35 (1973), 113–118.MathSciNetGoogle Scholar
  2. [2]
    A. Andreotti, T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713–717.CrossRefMathSciNetGoogle Scholar
  3. [3]
    V.I. Arnol’d, Singularities of fractions and the behavior of polynomials at infinity, Tr. Mat. Inst. Steklova 221 (1998), 48–68; translation in Proc. Steklov Inst. Math. 1998, no. 2 (221), 40–59.Google Scholar
  4. [4]
    A. Bodin, Invariance of Milnor numbers and topology of complex polynomials, Comment. Math. Helv. 78 (2003), no. 1, 134–152.MathSciNetzbMATHGoogle Scholar
  5. [5]
    A. Bodin, M. Tibăr, Topological triviality of families of complex polynomials, Adv. Math. 199 (2006), no. 1, 136–150.CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    S.A. Broughton, On the topology of polynomial hypersurfaces, Proceedings A.M.S. Symp. in Pure. Math., vol. 40, I (1983), 165–178.MathSciNetGoogle Scholar
  7. [7]
    S.M. Gusein-Zade, D. Siersma, Deformations of polynomials and their zeta functions, math.AG/0503450.Google Scholar
  8. [8]
    Hà H.V., A. Zaharia, Families of polynomials with total Milnor number constant, Math. Ann. 304 (1996), no. 3, 481–488.MathSciNetzbMATHGoogle Scholar
  9. [9]
    F. Lazzeri, A theorem on the monodromy of isolated singularities, in: Singularités à Cargèse, 1972, pp. 269–275. Astérisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973.Google Scholar
  10. [10]
    Lê D.T., Une application d’un théorème d’A’Campo à l’équisingularité, Nederl. Akad. Wetensch. Proc. (Indag. Math.) 35 (1973), 403–409.Google Scholar
  11. [11]
    A. Némethi, C. Sabbah, Semicontinuity of the spectrum at infinity, Abh. Math. Sem. Univ. Hamburg 69 (1999), 25–35.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), no. 3, 369–384.MathSciNetzbMATHGoogle Scholar
  13. [13]
    D. Siersma, J. Smeltink, Classification of singularities at infinity of polynomials of degree 4 in two variabales, Georgian Math. J. 7(1) (2000), 179–190.MathSciNetzbMATHGoogle Scholar
  14. [14]
    D. Siersma, M. Tibăr, Singularities at infinity and their vanishing cycles, Duke Math. Journal 80(3) (1995), 771–783.CrossRefzbMATHGoogle Scholar
  15. [15]
    D. Siersma, M. Tibăr, Deformations of polynomials, boundary singularities and monodromy, Mosc. Math. J. 3(2) (2003), 661–679.MathSciNetzbMATHGoogle Scholar
  16. [16]
    M. Tibăr, Bouquet decomposition of the Milnor fibre, Topology 35,1 (1996), 227–241.CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17]
    M. Tibăr, On the monodromy fibration of polynomial functions with singularities at infinity, C.R. Acad. Sci. Paris, 324 (1997), 1031–1035.zbMATHGoogle Scholar
  18. [18]
    M. Tibăr, Regularity at infinity of real and complex polynomial maps, in: Singularity Theory, The C.T.C Wall Anniversary Volume, LMS Lecture Notes Series 263 (1999), 249–264. Cambridge University Press.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Dirk Siersma
    • 1
  • Mihai Tibăr
    • 2
  1. 1.Mathematisch InstituutUniversiteit UtrechtUtrechtThe Netherlands
  2. 2.MathématiquesUniversité des Sciences et Technologies de LilleVilleneuve d’AscqFrance

Personalised recommendations