Calculation of Mixed Hodge Structures, Gauss-Manin Connections and Picard-Fuchs Equations

  • Hossein Movasati
Conference paper
Part of the Trends in Mathematics book series (TM)


In this article we introduce algorithms which compute iterations of Gauss-Manin connections, Picard-Fuchs equations of Abelian integrals and mixed Hodge structure of affine varieties of dimension n in terms of differential forms. In the case n = 1 such computations have many applications in differential equations and counting their limit cycles. For n > 3, these computations give us an explicit definition of Hodge cycles.


Mixed Hodge structure of affine varieties Gauss-Manin connection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable maps. Vol. II. Monodromy and asymptotics of integrals. Monographs in Mathematics, 83 Birkhäuser Boston, Inc., Boston, MA, 1988.Google Scholar
  2. [2]
    P. Deligne, Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57.MathSciNetGoogle Scholar
  3. [3]
    L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case. Invent. Math. 143(3) (2001), 449–497.CrossRefMathSciNetGoogle Scholar
  4. [4]
    L. Gavrilov, H. Movasati. The infinitesimal 16th Hilbert problem in dimension zero. Preprint 2005 (math.CA/0507061).Google Scholar
  5. [5]
    P.A. Griffiths. Infinitesimal variations of Hodge structure. III. Determinantal varieties and the infinitesimal invariant of normal functions. Compositio Math. 50(2–3) (1983), 267–324.MathSciNetGoogle Scholar
  6. [6]
    Yu. Ilyashenko. Centennial history of Hilbert’s 16th problem. Bull. Amer. Math. Soc. (N.S.), 39(3) (2002), 301–354.CrossRefMathSciNetGoogle Scholar
  7. [7]
    V.S. Kulikov, P.F. Kurchanov. Complex algebraic varieties: periods of integrals and Hodge structures. Algebraic geometry, III, 1–217, 263–270, Encyclopaedia Math. Sci., 36, Springer, Berlin, 1998.Google Scholar
  8. [8]
    H. Movasati. Center conditions: rigidity of logarithmic differential equations. J. Differential Equations, 197(1) (2004), 197–217.CrossRefMathSciNetGoogle Scholar
  9. [9]
    H. Movasati. Mixed Hodge structure of affine varieties. To appear in Ann. Ins. Four. (2005).Google Scholar
  10. [10]
    H. Movasati. Abelian integrals in holomorphic foliations. Revista Matemática Iberoamericana, 20(1) (2004), 183–204.MathSciNetGoogle Scholar
  11. [11]
    J. Steenbrink. Intersection form for quasi-homogeneous singularities. Compositio Math. 34(2) (1977) 211–223.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Hossein Movasati
    • 1
  1. 1.IMPA — Instituto de Matematica Pura e AplicadaJardim Botanico, Rio de Janeiro — RJBrazil

Personalised recommendations