Advertisement

Modular Lines for Singularities of the T-series

  • Bernd Martin
Conference paper
  • 506 Downloads
Part of the Trends in Mathematics book series (TM)

Abstract

Unimodular functions have a μ-constant line in their miniversal unfoldings. Their miniversal deformations on the other hand contain a nontrivial τ-constant stratum only for the three cases of elliptic singularities. In computer experiments we found six sub-series of the T-series, which have a modular line in the their miniversal deformations. The singular locus of the family restricted to such a line splits into an elliptic singularity and another one of A k-type, such that the deformation is τ-constant along the modular line. Each modular line can be patched together with the modular line of the associated elliptic singularity, completing it at infinity. All computations are based on the author’s algorithm for computing modular spaces as flatness stratum of the relative cotangent cohomology inside a deformation.

Keywords

Unimodal Singularities Deformations of singularities Modularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ale85]
    A.G. Alexandrov, Cohomology of a quasihomogeneous complete intersection, Izv. Akad. Nauk SSSR Ser. Mat. 49(3), (1985), 467–510.MathSciNetGoogle Scholar
  2. [AGZV85]
    V.I. Arnol’d, S.M. Gusein-Zade, A.N. Varchenko, it Singularities of differentiable maps Vol. I, Brikhäuser, (1985).Google Scholar
  3. [BK81]
    E. Brieskorn, H. Knörrer, Ebene algebraische Kurven, Birkhäuser, (1981).Google Scholar
  4. [Lau79]
    O.A. Laudal, Formal moduli of algebraic structures, Lecture Notes in Math. 754, Springer-Verlag, Berlin-New York, (1979).zbMATHGoogle Scholar
  5. [HM04]
    T. Hirsch, B. Martin, Deformations with sections: Cotangent cohomology, flatness and modular subspaces, Contem. math. and its appl., 15, (2004), 49–70.Google Scholar
  6. [Mar02]
    B. Martin, Algorithmic computation of flattenings and of modular deformations, J. Symbolic Computation 34 (2002), no. 3, 199–212.CrossRefGoogle Scholar
  7. [Mar03]
    B. Martin, Modular deformation and Space Curve Singularities, Rev. Mat. Iberoamericana 19 (2003), no. 2, 613–621.MathSciNetGoogle Scholar
  8. [Pal78]
    V.P. Palamodov, Moduli and versal deformations of complex spaces, in: Variétés analytiques compactes, LNM 683 Springer-Verlag, Berlin-New York, (1978), 74–115.CrossRefGoogle Scholar
  9. [Pal93]
    V.P. Palamodov, Deformation of analytic polyhedrons, J. Algebraic Geometry 2, (1993), 263–294.MathSciNetGoogle Scholar
  10. [Sai74]
    K. Saito, Einfach-elliptische Singularitäten, Invent. Math. 23, (1974), 289–325.CrossRefMathSciNetGoogle Scholar
  11. [GPS02]
    G.-M. Greuel, G. Pfister, H. Schnemann, Singular 2.0, University of Kaiserslautern, 2002, http://www.singular.uni-kl.de.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Bernd Martin
    • 1
  1. 1.Inst. MathematikBTU CottbusCottbusGermany

Personalised recommendations