Advertisement

F-manifolds from Composed Functions

  • Ignacio de Gregorio
  • David Mond
Conference paper
Part of the Trends in Mathematics book series (TM)

Keywords

Homotopy Type Versal Deformation Multiplicative Structure Frobenius Manifold Milnor Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.N. Damon, The unfolding and determinacy theorems for subgroups of \( \mathcal{A} \) and \( \mathcal{K} \), Memoirs Amer. Math. Soc. 306, 1984.Google Scholar
  2. [2]
    J.N. Damon, Deformations of sections of singularities and Gorenstein surface singularities, Amer. J. Math. 109 (1987) 695–722.CrossRefMathSciNetGoogle Scholar
  3. [3]
    J.N. Damon, \( \mathcal{A} \)-equivalence and the equivalence of sections of images and discriminants, in Singularity Theory and its Applications, Warwick 1989, Part 1, D. Mond and J. Montaldi Eds., Springer Lecture Notes in Math 1462, 1991.Google Scholar
  4. [4]
    J.N. Damon, Higher Multiplicities and almost free divisors and complete intersections, Memoirs Amer. Math. Soc. 589, 1996.Google Scholar
  5. [5]
    J.N. Damon and D. Mond, \( \mathcal{A} \)-codimension and the vanishing topology of discriminants, Invent. Math. 106 (1991), 217–242.CrossRefMathSciNetGoogle Scholar
  6. [6]
    V.V. Goryunov and D. Mond, Tjurina and Milnor number of matrix singularities, math.AG/0307025 at arXiv.org, 2003, to appear in Proc. London Math. Soc.Google Scholar
  7. [7]
    V.V. Goryunov and V.M. Zakalyukin, Simple symmetric matrix singularities and the subgroups of Weyl groups A μ, D μ, E μ, Mosc. Math. J. 3 (2003), 507–530.MathSciNetGoogle Scholar
  8. [8]
    C. Hertling, Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Mathematics 151, 2002.Google Scholar
  9. [9]
    C. Hertling and Y. I. Manin, Weak Frobenius manifolds, Internat. Math. Res. Notices 1999, no. 6, 277–286.CrossRefMathSciNetGoogle Scholar
  10. [10]
    J.N. Mather, Stability of C mappings VI: The nice dimensions, Proceedings of Liverpool Singularities-Symposium, I (1969/70), 207–253. Lecture Notes in Math., Vol. 192, 1971.MathSciNetGoogle Scholar
  11. [11]
    D. Siersma, Vanishing cycles and special fibres, in Singularity Theory and its Applications, Warwick 1989, Part 1, D. Mond and J. Montaldi Eds., Springer Lecture Notes in Math 1462, 1991.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Ignacio de Gregorio
    • 1
  • David Mond
    • 1
  1. 1.Ignacio de Gregorio and David Mond, Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations