The Multiplicity of Pairs of Modules and Hypersurface Singularities

  • Terence Gaffney
Conference paper
Part of the Trends in Mathematics book series (TM)


This paper applies the multiplicity polar theorem to the study of hypersurfaces with non-isolated singularities. The multiplicity polar theorem controls the multiplicity of a pair of modules in a family by relating the multiplicity at the special fiber to the multiplicity of the pair at the general fiber. It is as important to the study of multiplicities of modules as the basic theorem in ideal theory which relates the multiplicity of an ideal to the local degree of the map formed from the generators of a minimal reduction. In fact, as a corollary of the theorem, we show here that for M a submodule of finite length of a free module F over the local ring of an equidimensional complex analytic germ, that the number of points at which a generic perturbation of a minimal reduction of M is not equal to F, is the multiplicity of M.

Specifically, we apply the multiplicity polar theorem to the study of stratification conditions on families of hypersurfaces, obtaining the first set of invariants giving necessary and sufficient conditions for the Af condition for hypersurfaces with non-isolated singularities.


Complete Intersection Maximal Rank Exceptional Divisor Singular Locus Polar Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Briançon, P. Maisonobe and M. Merle, Localisation de systèmes différentiels, stratifications de Whitney et condition de Thom, Invent. Math. 117 (1994), 531–50CrossRefMathSciNetGoogle Scholar
  2. [2]
    J. Briançon and J.P. Speder, La trivialité topologique n’implique pas les conditions de Whitney, C.R. Acad. Sc.Paris, v. 280 365–367 (1975)Google Scholar
  3. [3]
    D.A. Buchsbaum and D.S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1963), 197–224CrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Fernández de Bobadilla, Approximations of non-isolated singularities of finite codimension with respect to an isolated complete intersection singularity. Bull. London Math. Soc. 35 (2003), no. 6, 812–816CrossRefMathSciNetGoogle Scholar
  5. [5]
    W. Fulton, “Intersection Theory,” Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge · Band 2, Springer-Verlag, Berlin, 1984Google Scholar
  6. [6]
    T. Gaffney, Aureoles and integral closure of modules, in “Stratifications, Singularities and Differential Equations II”, Travaux en Cours 55, Herman, Paris, 1997, 55–62Google Scholar
  7. [7]
    T. Gaffney, Integral closure of modules and Whitney equisingularity, Invent. Math. 107 (1992), 301–22CrossRefMathSciNetGoogle Scholar
  8. [8]
    T. Gaffney, Plane sections, Wf and Af, in “Real and complex singularities (São Carlos, 1998)”, Chapman and Hall Res. Notes Math. 412, 2000, 17–32Google Scholar
  9. [9]
    T. Gaffney, Multiplicities and equisingularity of ICIS germs, Invent. Math. 123 (1996), 209–220MathSciNetGoogle Scholar
  10. [10]
    T. Gaffney, Generalized Buchsbaum-Rim Multiplicities and a Theorem of Rees, Communications in Algebra, vol 31 #8 pp. 3811–3828, 2003CrossRefMathSciNetGoogle Scholar
  11. [11]
    T. Gaffney, Polar methods, invariants of pairs of modules and equisingularity, Real and Complex Singularities (Sao Carlos, 2002), Ed. T. Gaffney and M. Ruas, Contemp. Math., #354, Amer. Math. Soc., Providence, RI, June 2004, 113–136Google Scholar
  12. [12]
    T. Gaffney, The Multiplicity-Polar Formula and Equisingularity, in preparationGoogle Scholar
  13. [13]
    T. Gaffney and R. Gassler, Segre numbers and hypersurface singularities, J. Algebraic Geom. 8 (1999), 695–736MathSciNetGoogle Scholar
  14. [14]
    T. Gaffney and S. Kleiman, Specialization of integral dependence for modules Invent. Math. 137 (1999), 541–574CrossRefMathSciNetGoogle Scholar
  15. [15]
    T. Gaffney and S. Kleiman, Wf and specialization of integral dependence for modules, in “Real and complex singularities (São Carlos, 1998)”, Chapman and Hall Res. Notes Math. 412, 2000, 33–45MathSciNetGoogle Scholar
  16. [16]
    T. Gaffney and D. Massey, Trends in equisingularity, London Math. Soc. Lecture Note Ser. 263 (1999), 207–248MathSciNetGoogle Scholar
  17. [17]
    R. Gassler, Segre numbers and hypersurface singularities. Thesis, Northeastern University, 1999Google Scholar
  18. [18]
    J.P.G. Henry and M. Merle, Conormal Space and Jacobian module. A short dictionary, in “Proceedings of the Lille Congress of Singularities,” J.-P. Brasselet (ed.), London Math. Soc. Lecture Notes 201 (1994), 147–74Google Scholar
  19. [19]
    G. Jiang, Functions with non-isolated singularities on singular spaces, Thesis, Universiteit Utrecht, 1997Google Scholar
  20. [20]
    S. Kleiman and A. Thorup, A geometric theory of the Buchsbaum-Rim multiplicity, J. Algebra 167 (1994), 168–231CrossRefMathSciNetGoogle Scholar
  21. [21]
    S. Kleiman and A. Thorup, The exceptional fiber of a generalized conormal space, in “New Developments in Singularity Theory.” D. Siersma, C.T.C. Wall and V. Zakalyukin (eds.), Nato Science series, II Mathematics, Physics and Chemistry, Vol. 21 2001 401–404Google Scholar
  22. [22]
    D.T. Lê and B. Teissier, Cycles evanescents, sections planes et conditions de Whitney. II, Proc. Sympos. Pure Math. 40, part 2, Amer. Math. Soc., 1983, 65–104Google Scholar
  23. [23]
    M. Lejeune-Jalabert and B. Teissier, Clôture intégrale des ideaux et equisingularité, chapitre 1 Publ. Inst. Fourier (1974)Google Scholar
  24. [24]
    D. Massey Lê Cycles and Hypersurface Singularities, Springer Lecture Notes in Mathematics 1615, (1995)Google Scholar
  25. [25]
    D. Mumford, Algebraic Geometry I Complex Projective Varieties, Springer-Verlag 1976Google Scholar
  26. [26]
    A. Nemethi, Hypersurface singularities with a 2-dimensional critical locus, J. London Math. Soc. (3), 59, (1999), 922–938CrossRefMathSciNetGoogle Scholar
  27. [27]
    R. Pellikaan, Hypersurface singularities and resolutions of Jacobi modules, Thesis, Rijkuniversiteit Utrecht, 1985Google Scholar
  28. [28]
    R. Pellikaan, Finite determinacy of functions with non-isolated singularities, Proc. London Math. Soc. vol. 57, pp. 1–26, 1988MathSciNetGoogle Scholar
  29. [29]
    D. Siersma, Isolated line singularities. Singularities, Part 2 (Arcata, Calif., 1981), 485–496, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983Google Scholar
  30. [30]
    B. Teissier, The hunting of invariants in the geometry of the discriminant, in “Real and complex singularities, Oslo 1976,” P. Holm (ed.), Sijthoff & Noordhoff (1977), 565–678Google Scholar
  31. [31]
    B. Teissier, Multiplicités polaires, sections planes, et conditions de Whitney, in “Proc. La Rábida, 1981.” J.M. Aroca, R. Buchweitz, M. Giusti and M. Merle (eds.), Springer Lecture Notes in Math. 961 (1982), 314–491Google Scholar
  32. [32]
    A. Zaharia, A study about singularities with non-isolated critical locus, Thesis, Rijkuniversiteit Utrecht, 1993Google Scholar
  33. [33]
    A. Zaharia, Topological properties of certain singularities with critical locus a 2-dimensional complete intersection, Topology Appl. 60 (1994), no. 2, 153–171CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Terence Gaffney
    • 1
  1. 1.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations