Advertisement

Path Formulation for Z2Z2-equivariant Bifurcation Problems

  • João Carlos Ferreira Costa
  • Angela Maria Sitta
Conference paper
  • 501 Downloads
Part of the Trends in Mathematics book series (TM)

Abstract

M. Manoel and I. Stewart ([10]) classify ℤ2 ⊕ ℤ2-equivariant bifurcation problems up to codimension 3 and 1 modal parameter, using the classical techniques of singularity theory of Golubistky and Schaeffer [8]. In this paper we classify these same problems using an alternative form: the path formulation (Theorem 6.1). One of the advantages of this method is that the calculates to obtain the normal forms are easier. Furthermore, in our classification we observe the presence of only one modal parameter in the generic core. It differs from the classical classification where the core has 2 modal parameters. We finish this work comparing our classification to the one obtained in [10].

Keywords

Path formulation equivariant bifurcation problems Z2Z2-symmetry classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T.J. Bridges, J.E. Furter, Singularity theory and equivariant symplectic maps. Springer Lectures Notes 1558, Heidelberg, 1993.Google Scholar
  2. [2]
    J.C.F. Costa, Formulação por caminhos para problemas de bifurcação2 ⊕ ℤ2-equivariantes. Dissertação de Mestrado, Ibilce-Unesp, São José do Rio Preto, 2002.Google Scholar
  3. [3]
    J. Damon, The unfolding and determinacy theorems for subgroups of \( \mathcal{A} \) and \( \mathcal{K} \). Memoirs of the American Mathematical Society 306 (AMS, Providence RI), 1984.Google Scholar
  4. [4]
    J.E. Furter, A.M. Sitta, I. Stewart, Algebraic path formulation for equivariant bifurcation problems. Math. Proc. Camb. Phil. Soc. 124 (1998) 275–304.CrossRefMathSciNetGoogle Scholar
  5. [5]
    J.E. Furter, A.M. Sitta, Path formulation for equivariant bifurcation problem: the \( \mathbb{D}_3 \)-classification. To appear.Google Scholar
  6. [6]
    T. Gaffney, Some new results in the classification theory of bifurcation problems, in Multiparameter bifurcation theory. (Eds. Golubitsky, M. and Guckenheimer, J.), Contemporary Mathematics 56, Amer. Math. Soc., Providence RI (1986) 97–116.Google Scholar
  7. [7]
    M. Golubitsky, D.G. Schaeffer, Singularities and groups in bifurcation theory. Vol. I, Applied Mathematics and Sciences 51, Springer-Verlag, New York, 1985.zbMATHGoogle Scholar
  8. [8]
    M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and groups in bifurcation theory. Vol. II, Applied Mathematics and Sciences 69, Springer-Verlag, New York, 1988.zbMATHGoogle Scholar
  9. [9]
    E.J.N. Looijenga, Isolated singular points of complete intersections. LMS Lecture Notes, Vol. 17, Cambridge University Press, 1984.Google Scholar
  10. [10]
    M.G. Manoel, I. Stewart, Degenerate bifurcations with2 ⊕ ℤ2-symmetry. International Journal of Bifurcation and Chaos, Vol. 9, No. 8 (1999) 1653–1667.CrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Mather, Stability of C -mappings, III: finitely determined map germs. Publ.Math. I.H.E.S. 35 (1969), 127–156.Google Scholar
  12. [12]
    J. Montaldi, The path formulation of bifurcation theory, in Dynamics, bifurcation and symmetry: new trends and new tools. (Ed. P. Chossat), Nato ASI Series 437, Kluwer, Dordrecht (1994) 259–278.Google Scholar
  13. [13]
    K. Saito, Theory of logarithmic differential forms and logarithmic vectorfields. J. Fac. Sci. Univ. Tokyo Sec 1A 27 (1980), 265–291.Google Scholar
  14. [14]
    D.G. Schaeffer, M. Golubitsky, Boundary conditions and mode jumping in the buckling of a rectangular plate. Commun. Math. Phys. 69 (1979) 209–236.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • João Carlos Ferreira Costa
    • 1
  • Angela Maria Sitta
    • 1
  1. 1.Depto. Matemática - IBILCE-UNESPSão José do Rio Preto-SPBrazil

Personalised recommendations