Celestial Integration, Stringy Invariants, and Chern-Schwartz-MacPherson Classes

  • Paolo Aluffi
Conference paper
Part of the Trends in Mathematics book series (TM)


We introduce a formal integral on the system of varieties mapping properly and birationally to a given one, with value in an associated Chow group. Applications include comparisons of Chern numbers of birational varieties, new birational invariants, ‘stringy’ Chern classes, and a ‘celestial’ zeta function specializing to the topological zeta function.

In its simplest manifestation, the integral gives a new expression for Chern-Schwartz-MacPherson classes of possibly singular varieties, placing them into a context in which a ‘change of variable’ formula holds.

The formalism has points of contact with motivic integration.


Zeta Function Chern Class Inverse Limit Chow Group Chern Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AKMW02]
    Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk. Torification and factorization of birational maps. J. Amer. Math. Soc., 15(3):531–572, 2002.CrossRefMathSciNetGoogle Scholar
  2. [Alu05]
    Paolo Aluffi. Modification systems and integration in their Chow groups. Selecta Math. (N.S.), 11(2):155–202, 2005.CrossRefMathSciNetGoogle Scholar
  3. [Cra04]
    Alastair Craw. An introduction to motivic integration. In Strings and geometry, volume 3 of Clay Math. Proc., pages 203–225. Amer. Math. Soc., Providence, RI, 2004.Google Scholar
  4. [dFLNU]
    Tommaso de Fernex, Ernesto Lupercio, Thomas Nevins, and Bernardo Uribe. Stringy Chern classes of singular varieties, arXiv:math.AG/0407314. To appear in Adv. Math.Google Scholar
  5. [DL01]
    Jan Denef and François Loeser. Geometry on arc spaces of algebraic varieties. In European Congress of Mathematics, Vol. I (Barcelona, 2000), volume 201 of Progr. Math., pages 327–348. Birkhäuser, Basel, 2001.Google Scholar
  6. [Ful84]
    William Fulton. Intersection theory. Springer-Verlag, Berlin, 1984.zbMATHGoogle Scholar
  7. [Loo02]
    Eduard Looijenga. Motivic measures. Astérisque, (276):267–297, 2002. Séminaire Bourbaki, Vol. 1999/2000.MathSciNetGoogle Scholar
  8. [Mac74]
    Robert D. MacPherson. Chern classes for singular algebraic varieties. Ann. of Math. (2), 100:423–432, 1974.CrossRefMathSciNetGoogle Scholar
  9. [Sch65]
    Marie-Hélène Schwartz. Classes caractéristiques définies par une stratification d’une variété analytique complexe. I. C. R. Acad. Sci. Paris, 260:3262–3264, 1965.Google Scholar
  10. [Tot00]
    Burt Totaro. Chern numbers for singular varieties and elliptic homology. Ann. of Math. (2), 151(2):757–791, 2000.CrossRefMathSciNetGoogle Scholar
  11. [Veya]
    Willem Veys. Arc spaces, motivic integration and stringy invariants. In Singularity Theory and its Applications, Sapporo (Japan), September 16–25, 2003. Adv. Stud. Pure Math. Kinokuniya, Tokyo, 2005.Google Scholar
  12. [Veyb]
    Willem Veys. On motivic principal value integrals, arXiv:math.AG/0604167.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Paolo Aluffi
    • 1
  1. 1.Mathematics DepartmentFlorida State UniversityTallahasseeUSA

Personalised recommendations