Cholinergic, histaminergic, and noradrenergic regulation of LTP stability and induction threshold: cognitive implications

  • Hans C. Dringenberg
  • Min-Ching Kuo
Part of the Experientia Supplementum book series (EXS, volume 98)


Dentate Gyrus Perforant Path Theta Cycle fEPSP Amplitude Basal Forebrain Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    James W (1890) Principles of psychology. H. Holt & Co., New YorkGoogle Scholar
  2. 2.
    Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Memory 82: 171–177CrossRefGoogle Scholar
  3. 3.
    McGaugh JL (2000) Memory — a century of consolidation. Science 287: 248–251PubMedCrossRefGoogle Scholar
  4. 4.
    Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44: 5–21PubMedCrossRefGoogle Scholar
  5. 5.
    Martin SJ, Morris RGM (2002) New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12: 609–636PubMedCrossRefGoogle Scholar
  6. 6.
    Roman FS, Truchet B, Marchetti E, Chaillan FA, Soumireu-Mourat B (1999) Correlations between electrophysiological observations of synaptic plasticity modifications and behavioral performance in mammals. Progr Neurobiol 58: 61–87PubMedCrossRefGoogle Scholar
  7. 7.
    Abraham WC, Williams JM (2003) Properties and mechanisms of LTP maintenance. Neuroscientist 9: 463–474PubMedCrossRefGoogle Scholar
  8. 8.
    Dineley KT, Weeber EJ, Atkins C, Adams JP, Anderson AE, Sweatt JD (2001) Leitmotifs in the biochemistry of LTP induction: amplification, integration and coordination. J Neurochem 77: 961–971PubMedCrossRefGoogle Scholar
  9. 9.
    Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298: 776–780PubMedCrossRefGoogle Scholar
  10. 10.
    Heynen AJ, Abraham WC, Bear MF (1996) Bidirectional modification of CA1 synapses in the adult hippocampus in vivo. Nature 381: 163–166PubMedCrossRefGoogle Scholar
  11. 11.
    Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99: 10831–10836PubMedCrossRefGoogle Scholar
  12. 12.
    Ovsepian SV, Anwyl R, Rowan MJ (2004) Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: in vivo study. Eur J Neurosci 20: 1267–1275PubMedCrossRefGoogle Scholar
  13. 13.
    Bliss TVP, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate gyrus of the unanesthetized rabbit following stimulation of the perforant path. J Physiol 232: 357–374PubMedGoogle Scholar
  14. 14.
    Frey S, Bergado-Rosado J, Seidenbecher T, Pape H-C, Frey JU (2001) Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late-LTP. J Neurosci 21: 3697–3703PubMedGoogle Scholar
  15. 15.
    Abraham WC, Logan B, Greenwood JM, Dragunow M (2002) Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci 22: 9626–9634PubMedGoogle Scholar
  16. 16.
    Racine RJ, Chapman CA, Trepel C, Teskey GC, Milgram NW (1995) Post-activation potentiation in the neocortex. IV. Multiple sessions required for induction of long-term potentiation in the chronic preparation. Brain Res 702: 87–93PubMedCrossRefGoogle Scholar
  17. 17.
    Racine RJ, Teskey GC, Wilson D, Seidlitz E, Milgram NW (1994) Post-activation potentiation and depression in the neocortex of the rat: II. Chronic preparations. Brain Res 637: 83–96PubMedCrossRefGoogle Scholar
  18. 18.
    Heynen AJ, Bear MF (2001) Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo. J Neurosci 21: 9801–9813PubMedGoogle Scholar
  19. 19.
    Hughes SW, Lörincz M, Cope DW, Blethyn KL, Kekesi KA, Parri HR, Juhasz G, Crunelli V (2004) Synchronized oscillations at α and θ frequencies in the lateral geniculate nucleus. Neuron 42: 253–268PubMedCrossRefGoogle Scholar
  20. 20.
    Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cog Sci 3: 351–359CrossRefGoogle Scholar
  21. 21.
    Rasmusson DD (2000) The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res 115: 205–218PubMedCrossRefGoogle Scholar
  22. 22.
    Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Rev 23: 28–46PubMedCrossRefGoogle Scholar
  23. 23.
    Edeline J-M (1999) Learning-induced physiological plasticity in the thalamocortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progr Neurobiol 57: 165–224PubMedCrossRefGoogle Scholar
  24. 24.
    Edeline J-M (2003) The thalamocortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Exp Brain Res 153: 554–572PubMedCrossRefGoogle Scholar
  25. 25.
    Gu Q (2003) Contributions of acetylcholine to visual cortex plasticity. Neurobiol Learn Mem 80: 291–301PubMedCrossRefGoogle Scholar
  26. 26.
    Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5: 279–290PubMedCrossRefGoogle Scholar
  27. 27.
    Krnjevic K, Ropert N (1982) Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by the stimulation of the medial septum. Neuroscience 7: 2165–2183PubMedCrossRefGoogle Scholar
  28. 28.
    Semba K (2000) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 115: 117–141PubMedCrossRefGoogle Scholar
  29. 29.
    Markram H, Segal M (1990) Long-lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine. J Physiol (Lond) 427: 381–393Google Scholar
  30. 30.
    Brocher S, Artola A, Singer W(1992) Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res 573: 27–36PubMedCrossRefGoogle Scholar
  31. 31.
    Burgard EC, Sarvey JM (1990) Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neurosci Lett 116: 34–39PubMedCrossRefGoogle Scholar
  32. 32.
    Auerbach JM, Segal M (1994) A novel cholinergic induction of long-term potentiation in rat hippocampus. J Neurophysiol 72: 2034–2040PubMedGoogle Scholar
  33. 33.
    Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364: 723–725PubMedCrossRefGoogle Scholar
  34. 34.
    Markevich V, Scorsa AM, Dawe GS, Stephenson JD (1997) Cholinergic facilitation and inhibition of long-term potentiation of CA1 in the urethane-anaesthetized rats. Brain Res 754: 95–102PubMedCrossRefGoogle Scholar
  35. 35.
    Leung LS, Shen B, Rajakumar N, Ma J (2003) Cholinergic activity enhances hippocampal long-term potentiation in CA1 during walking in rats. J Neurosci 23: 9297–9304PubMedGoogle Scholar
  36. 36.
    Dudar JD, Whishaw IQ, Szerb JC (1979) Release of acetylcholine from the hippocampus of freely moving rats during sensory stimulation and running. Neuropharmacology 18: 673–678PubMedCrossRefGoogle Scholar
  37. 37.
    Boyd TE, Trepel C, Racine RJ (2000) Cholinergic modulation of neocortical long-term potentiation in the awake, freely moving rat. Brain Res 881: 28–36PubMedCrossRefGoogle Scholar
  38. 38.
    Verdier D, Dykes RW (2001) Long-term cholinergic enhancement of evoked potentials in rat hindlimb somatosensory cortex displays characteristics of long-term potentiation. Exp Brain Res 137: 71–82PubMedCrossRefGoogle Scholar
  39. 39.
    Dringenberg HC, Kuo M-C, Tomaszek S (2004) Stabilization of thalamocortical long-term potentiation by the amygdala: cholinergic and transcription-dependent mechanisms. Eur J Neurosci 20: 557–565PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang ZW, Vijayaraghaven S, Berg DK (1994) Neuronal acetylcholine receptors that bind alpha-bungarotoxin with high affinity function as ligand-gated ion channels. Neuron 12: 167–177PubMedCrossRefGoogle Scholar
  41. 41.
    Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, Fine A (2001) Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 21: 7993–8003PubMedGoogle Scholar
  42. 42.
    Hunt S, Schmidt J (1979) The relationship of alpha-bungarotoxin binding activity and cholinergic termination within the rat hippocampus. Neuroscience 4: 585–592PubMedCrossRefGoogle Scholar
  43. 43.
    Hunt SP, Schmidt J (1978) The electron microscopic autoradiographic localization of alpha-bungarotoxin binding sites within the central nervous system of the rat. Brain Res 142: 152–159PubMedCrossRefGoogle Scholar
  44. 44.
    Levy RB, Aoki C (2002) Alpha7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and-negative excitatory synapses in rat sensory cortex. J Neurosci 22: 5001–5015PubMedGoogle Scholar
  45. 45.
    Jones S, Sudweeks S, Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci 22: 555–561PubMedCrossRefGoogle Scholar
  46. 46.
    Barros DM, Ramirez MR, Dos Reis EA, Izquierdo I (2004) Participation of hippocampal nicotinic receptors in acquisition, consolidation and retrieval of memory for one trial inhibitory avoidance in rats. Neuroscience 126: 651–656CrossRefGoogle Scholar
  47. 47.
    Levin ED, Bradley A, Addy N, Sigurani N (2002) Hippocampal α 7 and α4β2 nicotinic receptors and working memory. Neuroscience 109: 757–765PubMedCrossRefGoogle Scholar
  48. 48.
    Hunter BE, de Fiebre CM, Papke RL, Kem WR, Meyer EM (1994) A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neurosci Lett 168: 130–134PubMedCrossRefGoogle Scholar
  49. 49.
    Sawada S, Yamamoto C, Ohno-Shosaku T (1994) Long-term potentiation and depression in the dentate gyrus and effects of nicotine. Neurosci Res 20: 323–329PubMedCrossRefGoogle Scholar
  50. 50.
    Fujii S, Ji Z, Morita N, Sumikawa K (1999) Acute and chronic nicotine exposure differentially facilitates the induction of LTP. Brain Res 846: 137–143PubMedCrossRefGoogle Scholar
  51. 51.
    Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31: 131–141PubMedCrossRefGoogle Scholar
  52. 52.
    Matsuyama S, Matsumoto A, Enomoto T, Nishizaki T (2000) Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. Eur J Neurosci 12: 3741–3747PubMedCrossRefGoogle Scholar
  53. 53.
    Bacciottini L, Passani MB, Mannaioni PF, Blandina P (2001) Interactions between histaminergic and cholinergic systems in learning and memory. Behav Brain Res 124: 183–194PubMedCrossRefGoogle Scholar
  54. 54.
    Blandina P, Efoudebe M, Cenni G, Mannaioni P, Passani MB (2004) Acetylcholine, histamine, and cognition: two sides of the same coin. Learn Mem 11: 1–8PubMedCrossRefGoogle Scholar
  55. 55.
    Haas H, Panula P (2003) The role of histamine and the tuberomammillary nucleus in the nervous system. Nat Rev Neurosci 4: 121–130PubMedCrossRefGoogle Scholar
  56. 56.
    Bekkers JM (1993) Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science 261: 104–106PubMedCrossRefGoogle Scholar
  57. 57.
    Vorobjev VS, Sharonova IN, Walsh IB, Haas HL (1993) Histamine potentiates N-methyl-D-aspartate responses in acutely isolated hippocampal neurons. Neuron 11: 837–844PubMedCrossRefGoogle Scholar
  58. 58.
    Brown RE, Fedorov NB, Haas HL, Reymann KG (1995) Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology 34: 181–190PubMedCrossRefGoogle Scholar
  59. 59.
    Bacciottini L, Passani MB, Giovannelli L, Cangiolo I, Mannaioni PF, Schunack W, Blandina P (2002) Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 15: 1669–1680PubMedCrossRefGoogle Scholar
  60. 60.
    Cecchi M, Passani MB, Bacciottini L, Mannaioni PF, Blandina P (2001) Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 13: 68–78PubMedCrossRefGoogle Scholar
  61. 61.
    Blandina P, Giorgetti M, Bartolini L, Cecchi M, Timmerman H, Leurs R, Pepeu G, Giovannini MG (1996) Inhibition of cortical acetylcholine release and cognitive performance by histamine H3receptor activation in rats. Br J Pharmacol 119: 1656–1664PubMedGoogle Scholar
  62. 62.
    Lacaille JC, Harley CW (1985) The action of norepinephrine in the dentate gyrus: beta-mediated facilitation of evoked potentials in vitro. Brain Res 358: 210–220PubMedCrossRefGoogle Scholar
  63. 63.
    Harley CW, Milway JS (1986) Glutamate ejection in the locus coeruleus enhances the perforant path-evoked population spike in the dentate gyrus. Exp Brain Res 63: 143–150PubMedCrossRefGoogle Scholar
  64. 64.
    Harley C, Milway JS, Lacaille J-C (1989) Locus coeruleus potentiation of dentate gyrus responses: evidence for two systems. Brain Res Bull 22: 643–650PubMedCrossRefGoogle Scholar
  65. 65.
    Harley CW, Sara SJ (1992) Locus coeruleus bursts induced by glutamate trigger delayed perforant path spike amplitude potentiation in the dentate gyrus. Exp Brain Res 89: 581–587PubMedCrossRefGoogle Scholar
  66. 66.
    Klukowski G, Harley CW (1994) Locus coeruleus activation induces perforant path-evoked population spike potentiation in the dentate gyrus of awake rat. Exp Brain Res 102: 165–170PubMedCrossRefGoogle Scholar
  67. 67.
    Walling SG, Harley CW(2004) Locus ceruleus activation initiates delayed synaptic potentiation of perforant path input to the dentate gyrus in awake rats: a novel β-adrenergic-and protein synthesis-dependent mammalian plasticity mechanism. J Neurosci 24: 598–604PubMedCrossRefGoogle Scholar
  68. 68.
    Emptage NJ, Carew TJ (1993) Long-term synaptic facilitation in the absence of short-term facilitation in Aplysia neurons. Science 262: 253–256PubMedCrossRefGoogle Scholar
  69. 69.
    Frey S, Bergado JA, Frey JU(2003) Modulation of late phases of long-term potentiation in the rat dentate gyrus by stimulation of the medial septum. Neuroscience 118: 1055–1062PubMedCrossRefGoogle Scholar
  70. 70.
    Straube T, Frey JU (2003) Involvement of beta-adrenergic receptors in protein synthesis-dependent late long-term potentiation (LTP) in the dentate gyrus of freely moving rats: the critical role of the LTP induction strength. Neuroscience 119: 473–479PubMedCrossRefGoogle Scholar
  71. 71.
    Straube T, Korz V, Balschun D, Frey JU (2003) Requirement of β-adrenergic receptor activation and protein synthesis for LTP-reinforcement by novelty in rat dentate gyrus. J Physiol (Lond) 552.3: 953–960CrossRefGoogle Scholar
  72. 72.
    Bliss TVP (1998) The saturation debate. Science 281: 1975–1976PubMedCrossRefGoogle Scholar
  73. 73.
    Cain DP (1997) LTP, NMDA, genes and learning. Curr Opin Neurobiol 7: 235–242PubMedCrossRefGoogle Scholar
  74. 74.
    Stevens CF (1998) A million dollar question: does LTP = memory? Neuron 20: 1–2PubMedCrossRefGoogle Scholar
  75. 75.
    Bartus RT, Flicker C, Dean R, Pontecorvo M, Figueriedo J, Fisher S (1985) Selective memory loss following nucleus basalis lesions: long-term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol Biochem Behav 23: 125–135PubMedCrossRefGoogle Scholar
  76. 76.
    Bartus RT (1979) Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: effects of concurrent administration of physostigmine and methylphenidate with scopolamine. Pharmacol Biochem Behav 9: 833–836CrossRefGoogle Scholar
  77. 77.
    Bartus RT, Johnson HR (1976) Short-term memory in the rhesus monkey: disruption from the anti-cholinergic scopolamine. Pharmacol Biochem Behav 5: 39–46PubMedCrossRefGoogle Scholar
  78. 78.
    Turchi J, Saunders RC, Mishkin M (2005) Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys. Ann Natl Acad Sci USA 102: 2158–2161CrossRefGoogle Scholar
  79. 79.
    Power AE, Vazdarjanova A, McGaugh JL (2003) Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Memory 80: 178–193CrossRefGoogle Scholar
  80. 80.
    Barros DM, Pereira P, Medina JH, Izquierdo I (2002) Modulation of working memory and of long-but not short-term memory by cholinergic mechanisms in the basolateral amygdala. Behav Pharmacol 13: 163–167PubMedGoogle Scholar
  81. 81.
    Power AE, McGaugh JL (2002) Phthalic acid amygdalopetal lesions of the nucleus basalis magnocellularis induces reversible memory deficits in rats. Neurobiol Learn Memory 77: 372–388CrossRefGoogle Scholar
  82. 82.
    Cahill L, Weinberger NM, Roozendaal B, McGaugh JL (1999) Is the amygdala a locus of “conditioned fear”? Some questions and caveats. Neuron 23: 227–228PubMedCrossRefGoogle Scholar
  83. 83.
    Dringenberg HC, Vanderwolf CH (1996) Cholinergic activation of the electrocorticogram: an amygdaloid activating system. Exp Brain Res 108: 285–296PubMedCrossRefGoogle Scholar
  84. 84.
    Dringenberg HC, Vanderwolf CH (1997) Neocortical activation: modulation by multiple pathways acting on central cholinergic and serotonergic systems. Exp Brain Res 116: 160–174PubMedCrossRefGoogle Scholar
  85. 85.
    Power AE, Thal LJ, McGaugh JL (2002) Lesions of the nucleus basalis magnocellularis induced by 192 IgG-saporin block memory enhancement with posttraining norepinephrine in the basolateral amygdala. Proc Natl Acad Sci USA 99: 2315–2319PubMedCrossRefGoogle Scholar
  86. 86.
    Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163: 495–529PubMedCrossRefGoogle Scholar
  87. 87.
    Izquierdo I, Medina JH, Izquierdo LA, Barros DM, de Souza MM, Souza T (1998) Short-and long-term memory are differentially regulated by monoaminergic systems in the rat brain. Neurobiol Learn Mem 69: 219–224PubMedCrossRefGoogle Scholar
  88. 88.
    Kobayashi K, Noda Y, Matsushita N, Nishii K, Sawada H, Nagatsu T, Nakahara D, Fukabori R, Yasoshima Y, Yamamoto T et al. (2000): Modest neuropsychological deficits caused by a reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene. J Neurosci 20: 2418–2426PubMedGoogle Scholar
  89. 89.
    Quevedo J, Sant’Anna MK, Madruga M, Lovato I, de-Paris F, Kapczinski F, Izquierdo I, Cahill L (2003) Differential effects of emotional arousal in short-and long-term memory of healthy adults. Neurobiol Learn Mem 79: 132–135PubMedCrossRefGoogle Scholar
  90. 90.
    Cahill L, Prins B, Weber M, McGaugh JL (1994) β-adrenergic activation and memory for emotional events. Nature 371: 702–704PubMedCrossRefGoogle Scholar
  91. 91.
    Izquierdo LA, Barros DM, Vianna MRM, Coitinho A, Silva TD, Choi H, Moletta B, Medina JH, Izquierdo I (2002) Molecular pharmacological dissection of short-and long-term memory. Cell Mol Neurobiol 22: 269–287PubMedCrossRefGoogle Scholar
  92. 92.
    Izquierdo I, Medina JH, Vianna MRM, Izquierdo LA, Barros DM (1999) Separate mechanisms for short-and long-term memory. Behav Brain Res 103: 1–11PubMedCrossRefGoogle Scholar
  93. 93.
    Fournier GN, Semba K, Rasmusson DD (2004) Modality-and region-specific acetylcholine release in the rat neocortex. Neuroscience 126: 257–262PubMedCrossRefGoogle Scholar
  94. 94.
    Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6: 526–531PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2006

Authors and Affiliations

  • Hans C. Dringenberg
    • 1
  • Min-Ching Kuo
    • 1
  1. 1.Department of Psychology and Centre for Neuroscience StudiesQueen’s UniversityKingstonCanada

Personalised recommendations