Neurotransmitters and cognition

  • Mohammad R. Zarrindast
Part of the Experientia Supplementum book series (EXS, volume 98)


Passive Avoidance Cholinergic System Memory Retention Inhibitory Avoidance Behav Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dringenberg HC (2000) Alzheimer’s disease: more than a “cholinergic disorder” — evidence that cholinergic-monoaminergic interactions contribute to EEG slowing and dementia. Behav Brain Res 115: 235–249PubMedCrossRefGoogle Scholar
  2. 2.
    Bymaster FP, Heath I, Hendrix JC, Shannon HE (1993) Cooperative behavioral and neurochemical activities of cholinergic antagonists in rats. J Pharmacol Exp Ther 267:16–24PubMedGoogle Scholar
  3. 3.
    Terry AV, Buccafusco JJ, Jackson WJ (1993) Scopolamine reversal of nicotine enhanced delayed matching-to-sample performane in mokeys. Pharmacol Biochem Behav 45:925–929PubMedCrossRefGoogle Scholar
  4. 4.
    Moran PM (1993) Differential effects of scopolamine and mecamylamine on working and reference memory in the rat. Pharmacl Biochem Behav 45: 533–538CrossRefGoogle Scholar
  5. 5.
    Kopelman MD (1986) The cholinergic neurotransmitter system in human memory and dementia: a review. Q J Exp Psychol 38: 535–573Google Scholar
  6. 6.
    Freo U, Pizzolato G, Dam M, Ori C, Battistin L (2002) Art review of cognitive and functional neuroimaging studies of cholinergic drugs: implications for therapeutic potentials. J Neural Transm 109: 857–870PubMedCrossRefGoogle Scholar
  7. 7.
    Gallagher M, Nagahara AH, Burwell RD (1995) Cognition and hippocampal systems in aging: animal models. In: McGauph JL, Weinberger N, Lynch G (eds): Brain and memory; modulation and mediation of neuroplasticity. Oxford University Press, New York, 103–126Google Scholar
  8. 8.
    Rapp PR, Amaral DG (1992) Individual differences in the behavioral and neurological consequences of normal aging. Trends Neurosci 16: 104–110Google Scholar
  9. 9.
    Muir JC (1997) Acetylcholie, aging, and Alzheimer’s disease. Pharmacol Biochem Behav 56: 687–696PubMedCrossRefGoogle Scholar
  10. 10.
    Dunnett SB, Everitt BJ, Robbins TW (1991) The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions. Trends Neurosci 14: 494–501PubMedCrossRefGoogle Scholar
  11. 11.
    Fibiger HC (1991) Cholinergic mechanisms in learning, memory and dementia: a review of evidence. Trends Neurosci 14: 220–223PubMedCrossRefGoogle Scholar
  12. 12.
    Mesulam MM, Geula C (1988) Nucleus basalis and cortical cholinergic innervation in the human brain: observation based on the distribution of AchE and ChAT. J Comp Neurol 275: 216–240PubMedCrossRefGoogle Scholar
  13. 13.
    Mesulam MM, Geula C, Botwell MA, Hersch I (1989) Human reticular formation; cholinergic neurons of the peduncolopontine and lateral tegmental nuclei and some cytochemical comparison to forebrain cholinergic neurons. J Comp Neurol 281: 611–633CrossRefGoogle Scholar
  14. 14.
    Gotti C, Fornasari D, Clementi F (1997) Human neuronal nicotinic receptors. Prog Neurobiol 53: 199–237PubMedCrossRefGoogle Scholar
  15. 15.
    Diamond B, Deluca J, Kelley SM (1997) Memory and executive functions in amnestic and non-amnestic patients with aneurysms of the anterior communicating artery. Brain 120: 1015–1025PubMedCrossRefGoogle Scholar
  16. 16.
    Abe K, Inokawa M, Kashiwagi A, Yamagihara T (1998) Amnesia after a discrete basal forebrain lesion. J Neurol Neurosurg Psychiat 65: 126–130PubMedGoogle Scholar
  17. 17.
    Damasio AR, Graff-Radford NR, Eslinger PJ, Damasio H, Kassell N (1985) Amnesia following basal forebrain lesions. Arch Neurol 42: 263–271PubMedGoogle Scholar
  18. 18.
    Chrobak JJ, Hanin I, Schmechel DE Walsh TJ (1988) AF64A-induced working memory impairment behavioral neurochemical and histological correlates. Brain Res 463:107–117PubMedCrossRefGoogle Scholar
  19. 19.
    Jarrard LE, Okaichi H, Steward O Goldschmidt RB (1984) On the role of hippocampal connections in the performance of place cue tasks: comparisons with damage to hippocampus. Behav Neurosci 98: 946–954PubMedCrossRefGoogle Scholar
  20. 20.
    Markowska AL, Olton DS, Givens B (1995) Cholinergic manipulations in the medial septal area: age-related effects on the working memory and hippocampal electrophysiology. J Neurosci 15: 2063–2073PubMedGoogle Scholar
  21. 21.
    Stackman RW, Walsh TJ (1995) Distinct profile of working memory errors following acute or chronic disruption of the cholinergic septohippocampal pathway. Neurobiol Learn Mem 64: 226–236PubMedCrossRefGoogle Scholar
  22. 22.
    Coyle JT, Price DL, Delong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219: 1184–1190PubMedCrossRefGoogle Scholar
  23. 23.
    Procter AW, Lowe S, Palmer AM, Francis PT, Esiri MM, Stratmann GC, Najlerahim A, Patel AJ, Hunt A Bowen DM (1988) Topographical distribution of neurochemical changes in Alzheimer’s disease. J Neurol Sci 84: 125–140PubMedCrossRefGoogle Scholar
  24. 24.
    Dunnett SB Fibiger HC (1993) Role of forebrain cholinergic systems in learning and memory relevance to the cognitive deficits of aging and Alzheimer’s dementia. In: Cuello AC (ed): Cholinergic function and dysfunction. Prog Brain Res 98: 413–420Google Scholar
  25. 25.
    Le Novere N Changeux JP (1995) Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 40: 155–172PubMedCrossRefGoogle Scholar
  26. 26.
    Balfour DJ (1982) The effects of nicotine on brain neurotransmitter systems. Pharmacol Ther 16: 269–282PubMedCrossRefGoogle Scholar
  27. 27.
    Samini M, Shayegan Y, Zarrindast MR (1995) Nicotine-induced purposeless chewing in rats: possible dopamine receptor mediation. J Psychopharmacol 9: 16–19Google Scholar
  28. 28.
    Zarrindast M., Sedaghati F Borzouyeh M(1998) Nicotine-induced grooming: a possible dopaminergic and/or cholinergic mechanism. J Psychopharmacol 12: 407–411Google Scholar
  29. 29.
    Zarrindast MR, Zarghi A Amiri A (1995) Nicotine-induced hypothermia through an indirect dopaminergic mechanism. J Psychopharmacol 9: 20–24Google Scholar
  30. 30.
    Zarrindast MR, Homayoun H, Babaie A, Etminani A Gharib B (2000) Involvement of adrenergic and cholinergic system in nicotine-induced anxiogenesis in mice. Eur J Pharmacol 407: 145–158PubMedCrossRefGoogle Scholar
  31. 31.
    Zarrindast MR, Shekarchi M Rezayat M (1999) Effect of nicotine on apomorphineinduced licking behaviour in rats. Eur Neuropsychopharmacol 9: 235–238PubMedCrossRefGoogle Scholar
  32. 32.
    Zarrindast MR, Mohadess G, Rezvani-pour M (2000) Effect of nicotine on sniffing induced by dopaminergic receptor stimulation. Eur Neuropsychopharmacol 10: 397–400PubMedCrossRefGoogle Scholar
  33. 33.
    Zarrindast MR, Farzin D (1996) Nicotine attenuates naloxone-induced jumping behaviour in morphine-dependent mice. Eur J Pharmacol 298: 1–6PubMedCrossRefGoogle Scholar
  34. 34.
    Zarrindast MR, Babaei-Nami A Farzin D(1996) Nicotine potentiates morphine antinociception: a possible cholinergic mechanism. Eur Neuropsychopharmacol 6: 127–133PubMedCrossRefGoogle Scholar
  35. 35.
    Zarrindast MR, Pazouki M Nassiri-Rad Sh (1997) Involvement of cholinergic and opioid receptor mechanisms in nicotine-induced antinociception. Pharmacol Toxicol 81:209–213PubMedGoogle Scholar
  36. 36.
    Zarrindast MR, Haeri-Zadeh F, Zarghi A Lahiji P (1998) Nicotine potentiates sulpirideinduced catalepsy in mice. J Psychopharmacol 12: 279–282PubMedGoogle Scholar
  37. 37.
    Zarrindast MR, Barghi-Lashkari S, Shafizadeh M (2001) The possible cross-tolerance between morphine-and nicotine-induced hypothermia in mice. Pharmacol Biochem Behav 68: 283–289PubMedCrossRefGoogle Scholar
  38. 38.
    Picciotto MR Zoli M(2002) Nicotinic receptors in aging and dementia. J Neurobiol 53:641–655PubMedCrossRefGoogle Scholar
  39. 39.
    Peeke SC, Peeke HV (1984) Attention, memory, and cigarette smoking. Psychopharmacology 84: 205–216PubMedCrossRefGoogle Scholar
  40. 40.
    Gilliam DM, Schlessinger K (1985) Nicotine-produced relearning deficit in C57BL/6J and DBA/2J mice, Psychopharmacology 86: 291–295PubMedCrossRefGoogle Scholar
  41. 41.
    Chiou CY, Long JP, Potrepka R, Spratt JL (1970) The ability of various nicotinic agents to release acetylcholine from synaptic vesicles. Arch Int Pharmacodyn Ther 187: 88–96PubMedGoogle Scholar
  42. 42.
    Zarrindast MR, Sadegh M, Shafaghi B (1996) Effects of nicotine on memory retrieval in mice. Eur J Pharmacol 295: 1–6PubMedCrossRefGoogle Scholar
  43. 43.
    Ichihara K, Nabeshima T, Kameyama T (1988) Effects of haloperidol, sulpiride and SCH 23390 on passive avoidance learning in mice. Eur J Pharmacol 151: 435–442PubMedCrossRefGoogle Scholar
  44. 44.
    Haratounian V, Barnes E, Davis KL (1985) Cholinergic modulation of memory in rats. Psychopharmacol (Berl) 87: 266–271CrossRefGoogle Scholar
  45. 45.
    Quartermain D, Judge ME, Leo P (1988) Attenuation of forgetting by pharmacological stimulation of aminergic neurotransmitter systems. Pharmacol Biochem Behav 30:77–81PubMedCrossRefGoogle Scholar
  46. 46.
    Gozzani JL, Izquierdo I (1976) Possible peripheral adrenergic and central dopaminergic influences in memory consolidation. Psychopharmacol 49: 109–111Google Scholar
  47. 47.
    Martin BR, Onaivi ES, Martin TJ (1989) What is the nature of mecamylamine’s antagonism of the central effects of nicotine. Biochem Pharmacol 38: 3391–3397PubMedCrossRefGoogle Scholar
  48. 48.
    Clarke PB (1990) Dopaminergic mechanisms in the locomotor stimulant effects of nicotine. Biochem Pharmacol 40: 1427–1432PubMedCrossRefGoogle Scholar
  49. 49.
    Zarrindast MR, Hajian-Heydari A, Hoseini-Nia T (1992) Characterization of dopamine receptors involved in apomorphine-induced pecking in pigeons. Gen Pharmacol 23:427–430PubMedGoogle Scholar
  50. 50.
    Bracs PU, Gregory P, Jackson DM (1980) Passive avoidance in rats: disruption by dopamine applied to the nucleus accumbens. Psychopharmacol 83: 70–75Google Scholar
  51. 51.
    Hyttel J (1984) Functional evidence for selective dopamine D-1 receptor blockade by SCH 23390. Neuropharmacol 23:1395–401CrossRefGoogle Scholar
  52. 52.
    Stoof JC, Kebabian JW (1984) Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 35:2281–2296PubMedCrossRefGoogle Scholar
  53. 53.
    Bischoff S, Heinrich M, Sonntag JM, Krauss J (1986) The D-1 dopamine receptor antagonist SCH 23390 also interacts potently with brain serotonin (5-HT2) receptors. Eur J Pharmacol 129: 367–70PubMedCrossRefGoogle Scholar
  54. 54.
    Bijak M, Smialowski A (1989) Serotonin receptor blocking effect of SCH 23390. Neuropharmacol 23: 1395–1401Google Scholar
  55. 55.
    Hicks PE, Schoemaker H, Langer SZ (1984) 5HT-receptor antagonist properties of SCH 23390 in vascular smooth muscle and brain. Eur J Pharmacol 105: 339–342PubMedCrossRefGoogle Scholar
  56. 56.
    McGaugh JL (1988) Modulation of memory storage processes. In: Salomon PR, Goethals PRGR, Kelley CM, Stephenes BR (eds): Perspectives of memory research. Springer Press, NewYork, 33–64Google Scholar
  57. 57.
    Beatty WW, Butters N, Janowsky D(1986) Memory failure after scopolamine treatment: implications for cholinergic hypothesis of dementia. Behav Neural Biol 45: 196–211PubMedCrossRefGoogle Scholar
  58. 58.
    Eagger SA, Levy R, Sahakian BJ (1991) Tacrine in Alzheimer’s disease. Lancet 337:989–992PubMedCrossRefGoogle Scholar
  59. 59.
    Jones GMM, Sahakian BJ, Levy R, Warburton DM, Gray JA (1992) Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacol 108: 485–494CrossRefGoogle Scholar
  60. 60.
    Dunnett SB, Toniolo G, Fine A, Ryan CN, Björklund A, Iversen SD (1985) Transplantation of embryonic ventral forebrain neurons to the nucleus basalis magnocellularis-II. Sensorimotor and learning impairments. Neuroscience 16: 787–797PubMedCrossRefGoogle Scholar
  61. 61.
    Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69: 375–390PubMedCrossRefGoogle Scholar
  62. 62.
    Grecksch G, Matties H (1981) The role of dopaminergic mechanisms in the rat hippocampus for the consolidation in a brightness discrimination. Psychopharmacol 75: 165–168CrossRefGoogle Scholar
  63. 63.
    Sara SJ (1986) Haloperidol facilitates memory retrieval in the rat. Psychopharmacol 89: 307–310Google Scholar
  64. 64.
    Pakard MG, White NM (1989) Memory facilitation produced by dopamine agonists: role of receptor subtypes and mnemonic requirements. Pharmacol Biochem Behav 33: 511–518CrossRefGoogle Scholar
  65. 65.
    Nail-Boucherie K, Dourmap N, Jaffard R Costentin J (1998) The specific dopamine uptake inhibitor GBR 12783 improves learning of inhibitory avoidance and increases hippocampal acetylcholine release. Cognitive Brain Res 7: 203–205CrossRefGoogle Scholar
  66. 66.
    Schwartz JC, Giros B, Martres MP Sokoloff P (1992) The dopamine receptor family: molecular biology and pharmacology. Semin Neurosci 4: 99–108CrossRefGoogle Scholar
  67. 67.
    Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Ann Rev Neurosci 16: 299–321PubMedCrossRefGoogle Scholar
  68. 68.
    Seeman P, Van Tol HHM (1994) Dopamine-receptor pharmacology. Trends Pharmacol Sci 15: 264–270PubMedCrossRefGoogle Scholar
  69. 69.
    Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93–96PubMedCrossRefGoogle Scholar
  70. 70.
    Snyder SH (1992) Nitric oxide and neurons. Curr Opin Neurobiol 2: 323–327PubMedCrossRefGoogle Scholar
  71. 71.
    Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–151PubMedCrossRefGoogle Scholar
  72. 72.
    Bernabeun R, Bevilaqua L, Ardenghi P, Bromberg E, Schmitz, P, Bianchin M, Izquierdo I, Medina JH (1997) Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci USA 94: 7041–7046CrossRefGoogle Scholar
  73. 73.
    Izquierdo I, Medina JH, Izquierdo LA, Barros DM, de Souza MM, Mello e Souza T (1998) Short-and long-term memory are differentially regulated by monoaminergic systems in the rat brain. Neurobiol Learn Mem 69: 219–224PubMedCrossRefGoogle Scholar
  74. 74.
    Wilkerson A, Levin ED (1999) Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neuroscience 89: 743–749PubMedCrossRefGoogle Scholar
  75. 75.
    Hersi A, Rowe W, Gaudreau P, Quirion R (1995) Dopamine D1 receptor ligands modulate cognitive and hippocampal acetylcholine release in memory-impaired aged rats. Neuroscience 69: 1067–1074PubMedCrossRefGoogle Scholar
  76. 76.
    Setler PE, Sarau HM, Zirkle CL, Saunders HL (1978) The central effects of a novel dopamine agonist. Eur J Pharmacol 50: 419–430PubMedCrossRefGoogle Scholar
  77. 77.
    El-Ghundi M, Fletcher PJ, Drago J, Silbey DR, O’Dowd BF, George SR (1999) Spatial learning deficit in dopamine D1 receptor knockout mice. Eur J Pharmacol 383: 95–106PubMedCrossRefGoogle Scholar
  78. 78.
    Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313PubMedGoogle Scholar
  79. 79.
    Jackson DM, Ross SB, Hashizume (1988) Dopamine-mediated behaviours produced in naive mice by bromocriptine plus SKF 38393. J Pharm Pharmacol 40: 221–223PubMedGoogle Scholar
  80. 80.
    Arnt J, Hyttel J, Meier E (1988) Inactivation of dopamine D-1 or D-2 receptors differentially inhibits stereotypies induced by dopamine agonists in rats. Eur J Pharmacol 155: 37–47PubMedCrossRefGoogle Scholar
  81. 81.
    Umegaki H, Munoz J, Meyer RC, Spangler EL, Yoshimura J, Ikari H, Iguchi A, Ingram DK (2001) Involvement of dopamine D2 receptors in complex maze learning and acetylcholine release in ventral hippocampus of rats. Neuroscience 103: 27–33PubMedCrossRefGoogle Scholar
  82. 82.
    Hitchcott PK, Bonardi CMT, Phillips GD (1997) Enhanced stimulus-reward learning by intra-amygdala administration of a D3 dopamine receptor agonist. Psychopharmacol 133: 240–248CrossRefGoogle Scholar
  83. 83.
    Obserztyn M, Kostowski W (1983) Noradrenergic agonists and antagonists: effects on avoidance behaviour in rats. Acta Physiol Pol 34: 401–407Google Scholar
  84. 84.
    Introini-Collison IB, To S, McGaugh JL (1992) Fluoxetine effects on retention of inhibitory avoidance: enhancement by systemic but not intra-amygdala injections. Psychobiology 20: 28–32Google Scholar
  85. 85.
    Sirvio J, MacDonald E (1999) Central alpha1-adrenoceptors: their role in the modulation of attention and memory formation. Pharmacol Ther 83: 49–65PubMedCrossRefGoogle Scholar
  86. 86.
    Gold PE, Zornetzer SF (1983) The mnemon and its juices: neuromodulation of memory processes. Behav Neurol Biol 38: 151–189CrossRefGoogle Scholar
  87. 87.
    Introini-Collison IB, Saghafi D, Novack GD, McGaugh GL (1992) Memory-enhancing effects of post-training dipivefrin and epinephrine: involvement of peripheral and central adrenergic receptors. Brain Res 572: 81–86PubMedCrossRefGoogle Scholar
  88. 88.
    Devauges V, Sara SJ (1991) Memory retrieval enhancement by locus coeruleus stimulation: evidence for mediation by beta-receptors. Behav Brain Res 43: 93–97PubMedGoogle Scholar
  89. 89.
    Chen MF, Chiu TH, Lee EHY (1992) Noradrenergic mediation of the memory-enhancing effect of corticotropin-releasing factor in the locus coeruleus of rats. Psychopharmacology 17: 113–124Google Scholar
  90. 90.
    Liang KC, Juler R, McGaugh JL (1986) Modulating effect of posttraining epinephrine on memory: Involvement of the amygdala noradrenergicsystem. Brain Res 368: 125–133PubMedCrossRefGoogle Scholar
  91. 91.
    Introini-Collison IB, Nagahara AH, McGaugh JL (1989) Memory-enhancement with intra-amygdala naloxone in blocked by concurrent administration of propranolol. Brain Res 476: 94–101PubMedCrossRefGoogle Scholar
  92. 92.
    Quirarte GL, Roozendaal B, McGaugh JL (1997) Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc Natl Acad Sci USA 94:14048–14053PubMedCrossRefGoogle Scholar
  93. 93.
    Ayyagari V, Harrell LE, Parsons DS (1991) Interaction of neurotransmitter systems in the hippocampus: A study of behavioral effects of hippocampus systematic ingrowth. J Neurosci 11: 2848–2854PubMedGoogle Scholar
  94. 94.
    Mongeau R, Blier P, de Montigny C (1997) The serotonergic and noradrenergic systems of the hippocampus their interactions and the effects of antidepressant treatments. Brain Res Rev 23: 145–195PubMedCrossRefGoogle Scholar
  95. 95.
    Watabe AM, Zaki PA, O’Dell TJ (2000) Coactivation of beta-adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen-activated protein kinase in the hippocampal CA1 region. J Neurosci 20: 5924–5931PubMedGoogle Scholar
  96. 96.
    Goldman-Pakic PS, Lidow MS, Gallager DW (1990) Overlap of dopaminergic, adrenergic and serotonergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10: 2125–2138Google Scholar
  97. 97.
    Friedman PI, Adler DN, Davis KL (1999) The role of norepinephrine in the pathophysiology of cognitive disorders: Potential applications to the treatment of cognitive dysfunction in schizophrenia and Alzheimer’s disease. Biol Psychiatr 46: 1243–1252CrossRefGoogle Scholar
  98. 98.
    Haapalinna A, Sirviö J, MacDonald E, Virtanen R, Heinonen E (2000) The effects of a specific α 2-adrenoceptor antagonist, atipamezole, on cognitive performance and brain neurochemistry in aged Fisher 344 rats. Eur J Pharmacol 387: 141–150PubMedCrossRefGoogle Scholar
  99. 99.
    Zarrindast MR, Ghiasvand M, Homayoun H, Rostami P, Shafaghi B, Khavandgar S (2003) Adrenoceptor mechanisms underlying imipramine-induced memory deficits in rats. J Psychopharmacol 17: 83–88PubMedCrossRefGoogle Scholar
  100. 100.
    Zarrindast MR, Bakhsha A, Rostami P, Shafaghi B (2002) Effects of intrahippocampqal injection of GABAergic drugs on memory retention of passive avoidance learning in rats. J Psychopharmacol 16: 313–319PubMedCrossRefGoogle Scholar
  101. 101.
    Zarrindast MR, Khodjastefar E, Oryan Sh, Torkaman-Boutorabi A (2001) Baclofen-impairment of memory retention in rats: possible interaction with adrenoceptor mechanisms. Eur J Pharmacol 411: 283–288PubMedCrossRefGoogle Scholar
  102. 102.
    Zarrindast MR, Eidi M, Eidi A, Oryan Sh (2002) Effects of histamine and opioid systems on memory retention of passive avoidance learning in rats. Eur J Pharmacol 452: 193–197PubMedCrossRefGoogle Scholar
  103. 103.
    Zarrindast MR, Jamali-Raeufy N, Shafaghi B (1995) Effects of high doses of theophylline on memory acquisition. Psychopharmacol 122: 307–311CrossRefGoogle Scholar
  104. 104.
    Roth BL (1994) Multiple serotonin receptors: clinical and experimental aspects. Ann Clin Psychiatry 6: 67–78PubMedGoogle Scholar
  105. 105.
    Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet II: 1043Google Scholar
  106. 106.
    Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE (1997) Neurotransmitter enzyme abnormalities in senile dementia. J Neurol Sci 34: 247–265CrossRefGoogle Scholar
  107. 107.
    Mann DMA, Yates PO (1983) Serotonin nerve cells in Alzheimer’s disease. J Neurol Neurosurg Psychiat 46: 96–98PubMedCrossRefGoogle Scholar
  108. 108.
    Yamamoto T, Hirano A (1985) Nucleus raphe dorsalis in Alzheimer’s disease: Neurofibrillary tangles and loss of large neurons. Ann Neurol 17: 573–577PubMedCrossRefGoogle Scholar
  109. 109.
    Cassel JC, Jeltsch H (1995) Serotonergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience 69: 1–41PubMedCrossRefGoogle Scholar
  110. 110.
    Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PPA (1994) VII. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46: 157–203PubMedGoogle Scholar
  111. 111.
    Martin GR, Humphrey PPA (1994) Receptors for 5-hydroxytryptamine: Current perspectives on classification and nomenclature. Neuropharmacol 33: 261–273CrossRefGoogle Scholar
  112. 112.
    Buhot MC (1997) Serotonin receptors in cognitive behaviors. Curr Opin Neurobiol 7: 243–254PubMedCrossRefGoogle Scholar
  113. 113.
    Riad M, Emerit MB, Hamon M (1994) Neurotrophic effects of ipsapirone and other 5-HT1A receptor agonists on septal cholinergic neurons in culture. Devl Brain Res 82: 245–258CrossRefGoogle Scholar
  114. 114.
    Ramirez MJ, Cenarruzabeitia E, Lasheras B, Del Rio J (1996) Involvement of GABA systems in acetylcholine release induced by 5-HT3 receptor blockade in slices from rat entorhinal cortex. Brain Res 712: 274–280PubMedCrossRefGoogle Scholar
  115. 115.
    Ricaturte GA, Markowska AL, Wenk GL, Hatzidimitriou G, Wlos J, Olton DS (1993) 3,4-Methylendioxymethamphetamine, serotonin and memory. J Pharmacol Exp Ther 266: 1097–1105Google Scholar
  116. 116.
    Kia HK, Brisorgueil MJ, Daval G, Langlois X, Hamon M, Verge D (1996) Serotonin1A receptors are expressed by a subpopulation of cholinergic neurons in the rat medial septum and diagonal band of broca-A double immunocytochemical study. Neuroscience 74: 143–154PubMedCrossRefGoogle Scholar
  117. 117.
    Harvey JA (1996) Serotonergic regulation of associative learning. Behav Brain Res 73: 47–50PubMedCrossRefGoogle Scholar
  118. 118.
    Carli M, Luschi R, Samanin R (1995) (S)-WAY 100135, a 5-HT1A receptor antagonist, prevents the impairment of spatial learning caused by intrahippocampal scopolamine. Eur J Pharmacol 283: 133–139PubMedCrossRefGoogle Scholar
  119. 119.
    Buhot M-C, Patra SK, Naili S (1995) Spatial memory deficits following stimulation of hippocampal 5-HT1B receptors in the rat. Eur J Pharmacol 285: 221–228PubMedCrossRefGoogle Scholar
  120. 120.
    Carli M, Luschi R, Garofalo P, Samanin R (1995) 8-OH-DPAT impairs spatial but not visual learning in a water maze by stimulating 5-HT1A receptors in the hippocampus. Behav Brain Res 67: 67–74PubMedCrossRefGoogle Scholar
  121. 121.
    Harder JA, Maclean CJ, Alder JT, Drancis PT, Ridley RM (1996) The 5-HT1A antagonist, WAY 100635 ameliorates the cognitive impairment induced by fornix transection in the marmoset. Psychopharmacol 127: 245–254Google Scholar
  122. 122.
    Santucci AC, Knott PJ, Haroutunian V (1996) Excessive serotonin release, not depletion, leads to memory impairments in rats. Eur J Pharmacol 295: 7–17PubMedCrossRefGoogle Scholar
  123. 123.
    Stancampiano R, Cocco S, Cugusi C, Sarais L, Fadda F (1999) Serotonin and acetylcholine release response in the rat hippocampus during a spatial memory task. Neuroscience 89: 1135–1143PubMedCrossRefGoogle Scholar
  124. 124.
    Olvera-Cortes E, Barajas-Perez M, Morales-Villagrán A, González-Burgos I (2001) Central serotonin depletion induces egocentric learning improvement in developing rats. Neuroscience Lett 313: 29–32CrossRefGoogle Scholar
  125. 125.
    Hill DR, Bowery NG (1981) 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290: 149–152PubMedCrossRefGoogle Scholar
  126. 126.
    Matsumoto RR (1989) GABA receptors: are cellular differences reflected in function? Brain Res Rev 14: 203–225PubMedCrossRefGoogle Scholar
  127. 127.
    Malcangio M, Bowery N (1996) GABA and its receptors in the spinal cord. Trends Pharmacol Sci 17: 457–462PubMedCrossRefGoogle Scholar
  128. 128.
    Castellano C, McGaugh GH (1990) Effects of post-training bicuculline and muscimol on retention: lack of state dependency. Behav Neural Biol 54: 156–164PubMedCrossRefGoogle Scholar
  129. 129.
    Brioni JD, Nagahara AH, McGaugh JL (1989) Involvement of the amygdala GABAergic system in the modulation of memory storage. Brain Res 487: 105–112PubMedCrossRefGoogle Scholar
  130. 130.
    Nakagawa Y, Ishibashi Y, Yoshii T, Tagashira E (1995) Involvement of cholinergic systems in the deficit of place learning in Morris water maze task induced by baclofen in rats. Brain Res 683: 209–214PubMedCrossRefGoogle Scholar
  131. 131.
    Brioni JD, McGaugh JL (1988) Post-training administration of GABAergic antagonists enhance retention of aversively motivated tasks. Psychopharmacol 96: 505–510CrossRefGoogle Scholar
  132. 132.
    Castellano C, McGaugh GH (1989) Retention enhancement with post-training picrotoxin: lack of state dependency. Behav Neural Biol 51: 165–164PubMedCrossRefGoogle Scholar
  133. 133.
    Castellano C, Brioni JD, Nagahara AH, McGaugh JL (1989) Post-training systemic and intra-amygdala administration of the GABA-B agonist baclofen impair retention. Behav Neural Biol 52: 170–179PubMedCrossRefGoogle Scholar
  134. 134.
    McGaugh JL, Castellano C, Brionin (1990) Picrotoxin enhances latent extinction of conditioned fear. Behav Neurosci 104: 262–265CrossRefGoogle Scholar
  135. 135.
    Schmitt U, Hiemke C (2002) Tiagabine, a γ-amino-butyric acid transporter inhibitor impairs spatial learning of rats in the Morris water-maze. Behav Brain Res 133: 391–394PubMedCrossRefGoogle Scholar
  136. 136.
    McNamara RK, Skelton RW (1996) Baclofen, a selective GABAB receptor agonist, dose-dependently impairs spatial learning in rats. Pharmacol Biochem Behav 53:303–308PubMedCrossRefGoogle Scholar
  137. 137.
    Brucato FH, Mott DD, Lewis DV, Swartzwelder HS (1995) GABAB receptors modulate synaptically-evoked responses in the rat dendate gyrus in vivo. Brain Res 677: 326–332PubMedCrossRefGoogle Scholar
  138. 138.
    Brucato FH, Levin ED, Mott DD, Lewis DV, Wilson WA, Swartzwelder HS (1996) Hippocampal long-term potentiation and spatial learning in the rat: effects of GABAB receptors blockade. Neuroscience 74: 331–339PubMedCrossRefGoogle Scholar
  139. 139.
    Mccabe BJ, Horn G, Kendrick KM (2001) GABA, taurine and learning: release of amino acids from slices of chick brain following filial imprinting. Neuroscience 105: 317–324PubMedCrossRefGoogle Scholar
  140. 140.
    Moor E, DeBoer P, Westerink BHC (1998) GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo. Eur J Pharmacol 359:119–126PubMedCrossRefGoogle Scholar
  141. 141.
    Degroot A, Parent MB (2001) Infusion of physostigmine into the hippocampus or the entorhinal cortex attenuate avoidance retention deficits produced by intra-septal infusions of the GABA agonist muscimol. Brain Res 920: 10–18PubMedCrossRefGoogle Scholar
  142. 142.
    Decker MW, McGaugh JL (1991) The role of interactions between the cholinergic and other neuromodulatory systems in learning and memory. Synapse 7: 151–168PubMedCrossRefGoogle Scholar
  143. 143.
    Dudchenko P, Sarter M (1991) GABAergic control of basal forebrain cholinergic neurons and memory. Behav Brain Res 42: 33–41PubMedGoogle Scholar
  144. 144.
    Konopaki J, Golebiewski H (1993) Theta-like activity in hippocampal formation slices: cholinergic-GABAergic interaction. Neuroreport 4: 963–966CrossRefGoogle Scholar
  145. 145.
    Stackman RW, Walsh TJ (1994) Baclofen produced dose-related working memory impairments after intraseptal injection. Behav Neural Biol 61: 181–185PubMedCrossRefGoogle Scholar
  146. 146.
    Zarrindast MR, Lahiji P, Shafaghi B, Sadegh M (1998) Effects of GABAergic drugs on physostigmine-induced improvement in memory acquisition of passive avoidance learning in mice. Gen Pharmacol 31: 81–86PubMedGoogle Scholar
  147. 147.
    Izquidero I, Da Cunha C, Rosat R, Jerusalinsky D, Ferreira MBC, Medina JH (1992) Neurotransmitter receptors involved in post-training memory processing by the amygdala, medial septum, and hippocampus of the rat. Behav Neural Biol 58: 16–26CrossRefGoogle Scholar
  148. 148.
    Markam H, Segal M (1990) Long-lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine. J Physiol 427: 381–393Google Scholar
  149. 149.
    Izquierdo I, Medina JH (1991) GABAA receptorsmodulation of memory: the role of endogenous benzodiazepines. Trends Pharmacol Sci 12: 260–265PubMedCrossRefGoogle Scholar
  150. 150.
    Zarrindast MR, Shamsi T, Azarmina P, Rostami P, Shafaghi B (2004) GABAergic system and imipramine-induced impairment of memory retention in rats. Eur Neuropsychopharmacol 14: 59–64PubMedCrossRefGoogle Scholar
  151. 151.
    Getova D, Bowery NG (1998) The modulatory effects of high affinity GABAB receptor antagonists in an active avoidance learning paradigm in rats. Psychopharmacology 137:369–373PubMedCrossRefGoogle Scholar
  152. 152.
    Haas HL, Reiner PB, Greene RW (1991) Histaminergic and histaminoceptive neurons: electrophysiological studies in vertebrates. In: Wanatabe T, Wada H. (eds): Histaminergic neurons; morphology and function. CRC Press. Boca Ratton, 195–208Google Scholar
  153. 153.
    Schwarts JC, Arrang JM, Garbarg M, Pollard H, Ruat M (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71: 1–51Google Scholar
  154. 154.
    Onodera K, Yamatodani A, Watanabe T, Wada H (1994) Neuropharmacology of the histaminergic neuron system in the brain and its relationship with behavioral disorders. Prog Neurobiol 42: 685–702PubMedCrossRefGoogle Scholar
  155. 155.
    Inagaki N, Yamatodani A, Ando-Yamamoto M, Tohyama M, Watanabe T, Wada H (1988) Organization of histaminergic fibers in the rat brain. J Comp Neurol 273: 282–300CrossRefGoogle Scholar
  156. 156.
    Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Prog Natl Acad Sci USA 81: 2572–2576CrossRefGoogle Scholar
  157. 157.
    Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of histaminergic neuron system in the central nervous system of rats; a fluorecent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295: 13–25PubMedCrossRefGoogle Scholar
  158. 158.
    Niigawa H, Yamatodani A, Nishimura T, Wada H, Cacabelos R (1988) Effect of neurotoxic lesions in the mammillary bodies on the distribution of brain histamine. Brain Res 459: 183–186PubMedCrossRefGoogle Scholar
  159. 159.
    Leurs R, Smit MJ, Timmerman H (1995) Molecular pharmacological aspects of histamine receptors. Pharmacol Ther 66: 413–463PubMedCrossRefGoogle Scholar
  160. 160.
    Prell CD, Green JP (1986) Histamine as a neuroregulator. Annu Rev Neurosci 9: 209–254PubMedCrossRefGoogle Scholar
  161. 161.
    Schwarts JC, Arrang JM, Garbarg M (1986) Three classes of histamine receptor in brain. Trends Pharmacol Sci 7: 24–28CrossRefGoogle Scholar
  162. 162.
    Arrang JM, Garbarg M, Schwartz JC (1985) Autoregulation of histamine release in brain by presynaptic H3-receptors. Neuroscience 15: 553–562PubMedCrossRefGoogle Scholar
  163. 163.
    Endou M, Kazuhiko Y, Sakurai E, Fukudo S, Hongo M, Watanabe T (2001) Food-deprived activity stress decreased the activity of the histaminergic neuron system in rats. Brain Res 981: 32–41CrossRefGoogle Scholar
  164. 164.
    Pollard H, Moreau J, Arrang J M, Schwartz J C (1993) A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience 52: 169–189PubMedCrossRefGoogle Scholar
  165. 165.
    Schlicker E, Malinowska B, Kathman M, Gothert M (1994) Modulation of neurotransmitter release via histamine H3 heteroreceptors. Fundam Clin Pharmacol 8: 128–137PubMedCrossRefGoogle Scholar
  166. 166.
    Alvarez EO, Ruarte MB, Banzan AM (2001) Histaminergic systems of the limbic complex on learning and motivation. Behav Brain Res 124: 195–202PubMedCrossRefGoogle Scholar
  167. 167.
    Huston JP, Wagner U, Hasenohrl RU (1997) The tuberomammillary nucleus projections in the control of learning, memory and reinforcement process: evidence for an inhibitory role. Behav Brain Res 83: 97–105PubMedCrossRefGoogle Scholar
  168. 168.
    Smith CPS, Hunter AJ, Bennet GW (1994) Effects of (R)-alpha-methylhistamine and scopolamine on spatial learning in the rat assessed using a water maze. Psychopharmacol (Berl) 114: 651–656CrossRefGoogle Scholar
  169. 169.
    Miyazaki S, Imaizumi M, Onodera K (1995) Effects of thioperamide, a histamine H3-receptor antagonist, on a scopolamine-induced learning deficit using an elevated plusmaze test in mice. Life Sci 57: 2137–2144PubMedCrossRefGoogle Scholar
  170. 170.
    Fontana DJ, Inouye GT, Johnson RM (1994) Linopirdine (DuP 996) improves performance in several tests of learning and memory by modulation of cholinergic neurotransmission. Pharmacol Biochem Behav 49: 1075–1082PubMedCrossRefGoogle Scholar
  171. 171.
    Quirion R, Wilson A, Rowe W, Aubert I, Richard J, Doods H, Parent A, White N, Meaney MJ (1995) Facilitation of acetylcholine release and cognitive performance by an m2-muscarinic receptor antagonist in aged memory-impaired rats. J Neurosci 15:1455–1462PubMedGoogle Scholar
  172. 172.
    Frisch C, Hasenõhrl RU, Haas HL, Weiler HT, Steinbusch HWM, Huston JP (1998) Facilitation of learning after lesions of the tuberomammillary nucleus region in adult and aged rats. Exp Brain Rev 118: 447–456CrossRefGoogle Scholar
  173. 173.
    Eidi M, Zarrindast MR, Eidi A, Oryan Sh, Parivar K (2003) Effects of histamine and cholinergic systems on memory retention of passive avoidance learning in rats. Eur J Pharmacol 465: 91–96PubMedCrossRefGoogle Scholar
  174. 174.
    Tasaka K, Kamei C, Akahori H, Kitazumi K (1985) The effects of histamine and some compounds on conditioned avoidance response in rats. Life Sci 37: 2005–2015PubMedCrossRefGoogle Scholar
  175. 175.
    De Almeida MAM, Izquierdo I (1986) Memory facilitation by histamine. Arch Int Pharmacodyn Ther 283: 193–198PubMedGoogle Scholar
  176. 176.
    Kamei C, Tasaka K(1991) Participation of histamine in the step-through active avoidance response and its inhibition by H1-blockers. Jpn J Pharmacol 57: 473–482PubMedGoogle Scholar
  177. 177.
    Frisch C, Hasenõhrl RU, Krauth J, Huston JP (1998) Anxiolytic-like behavior after lesion of the tuberomammillary nucleus E2-region. Exp Brain Res 119: 260–264PubMedCrossRefGoogle Scholar
  178. 178.
    Seguro-Torres P, Wagner U, Massanes-Rotger E, Aldavert-era L, Marti-Nicolovius M, Morgado-Bernal I (1996) Tuberomammillary nucleus lesion facilitates two-way active avoidance retention in rats. Behav Brain Res 82: 113–117CrossRefGoogle Scholar
  179. 179.
    Gulat-Murray C, Lafitte A, Arrang JM, Schwartz JC (1989) Regulation of histamine release and synthesis in the brain by muscarinic receptors. J Neurochem 52: 248–254CrossRefGoogle Scholar
  180. 180.
    Khateb A, Fort P, Pegna A, Jones BE, Mühlethaler M (1995) Cholinergic nucleus basalis neurons are excited by histamine in vitro. Neuroscience 69: 495–506PubMedCrossRefGoogle Scholar
  181. 181.
    Prast H, Fischer HP, Prast M, Philippu A (1994) In vivo modulation of histamine release by autoreceptors and muscarinic acetylcholine receptors in the rat anterior hypothalamus. Naunyn-Schmiedeberg’s Arch Pharmacol 350: 599–604Google Scholar
  182. 182.
    Arrang JM, Gulat-Marnay C, Defontaine N, Schwartz JC (1991) Regulation of histamine release in rat hypothalamus and hippocampus by presynaptic galanin receptors. Peptides 12: 1113–1117PubMedCrossRefGoogle Scholar
  183. 183.
    Itoh Y, Oishi R, Nishibori M, Saeki K (1988) Involvement of mu receptors in the opioid-induced increase in the turnover of mouse brain histamine. J Pharmacol Exp Ther 244: 1021–1026PubMedGoogle Scholar
  184. 184.
    Ukai M, Itoh J, Kobayashi T, Shinkai N, Kameyama T (1997) Effects of the κ-opioid dynorphin A(1–13) on learning and memory in mice. Behav Brain Res 83: 169–172PubMedCrossRefGoogle Scholar
  185. 185.
    Izquierdo I (1980) Effect of β-endorphin and naloxone on acquisition, memory, and retrieval shuttle avoidance and habituation learning in rats. Psychopharmacol 69: 111–115CrossRefGoogle Scholar
  186. 186.
    Beatty WW (1983) Opiate antagonists, morphine and spatial memory in rats. Pharmacol Biochem Behav 19: 397–401PubMedCrossRefGoogle Scholar
  187. 187.
    Brake KE, Hough LB (1992) Morphine-induced increases of extracellular hiatamine levels in the periaqueductal gray in vivo; a microdialysis study. Brain Res 572: 146–153CrossRefGoogle Scholar
  188. 188.
    Flood JF, Uezu K, Morley JE (1998) Effect of histamine H2 and H3 receptor modulation in the septum on post-training memory processing. Psychopharmacol 140: 279–284CrossRefGoogle Scholar
  189. 189.
    Mickley GA (1986) Histamine H2 receptors mediate morphine-induced locomotor hyperactivity of the C57BL/6J mouse. Behav Neurosci 100: 79–84PubMedCrossRefGoogle Scholar
  190. 190.
    Wauquier A, Niemegeers CJE (1981) Effects of chlorpheniramine, pyrilamine and astemizole on intracranial self-stimulation in rats. Eur J Pharmacol 72: 245–248PubMedCrossRefGoogle Scholar
  191. 191.
    Zimmermann P, Wagner U, Krauth J, Huston JP (1997) Unilateral lesion of dorsal hippocapmpus enhances reinforcing lateral hypothalamic stimulation in the contralateral hemisphere. Brain Res Bull 44: 256–271Google Scholar
  192. 192.
    Shannon HE, Su TP (1982) Effects of the combination of tripelennamina and pentazocine at the behavioral and molecular levels. Pharmcol Biochem Behav 17: 789–795CrossRefGoogle Scholar
  193. 193.
    Suzuki T, Takamori K, Misawa M, Onodera K (1995) Effects of the histaminergic system on the morphine-induced conditions place preference in mice. Brain Res 675: 195–202PubMedCrossRefGoogle Scholar
  194. 194.
    Izquierdo I (1979) Effect of naloxone and morphine on various forms of memory in the rat: possible role of endogenous opiate mechanisms in memory consolidation. Psychopharmacol (Berl) 66: 199–203CrossRefGoogle Scholar
  195. 195.
    Izquierdo I, Dias RD (1983) Effect of ACTH, epinephrine, beta-endorphin, naloxone, and of the combination of naloxone or beta-endorphin with ACTH or epinephrine on memory consolidation. Psychoneuroendocrinol 8: 81–87CrossRefGoogle Scholar
  196. 196.
    De Almeida MA, Izquierdo I (1984) Effect of the intraperitoneal and intracerebroventricular administration of ACTH, epinephrine, or beta-endorphin on retrieval of an inhibitory avoidance task in rats. Behav Neural Biol 40:119–122PubMedCrossRefGoogle Scholar
  197. 197.
    Izquierdo I, De Almeida MA, Emiliano VR (1985) Unlike beta-endorphin, dynorphine 1–13 does not cause retrograde amnesia for shuttle avoidance or inhibitory avoidance learning in rats. Psychopharmacol 87: 216–218CrossRefGoogle Scholar
  198. 198.
    Izquierdo I, Dias RD (1983) Endogenous state-dependency: memory regulation by post-training and pre-testing administration of ACTH, beta-endorphin, adrenaline and tyramine. Braz J Med Biol Res 16: 55–64PubMedGoogle Scholar
  199. 199.
    Kameyama T, Nabeshima T, Kozawa T (1986) Step-down-type passive avoidance-and escape-learning method. Suitability for experimental amnesia models. J Pharmacol Methods 16: 39–52PubMedCrossRefGoogle Scholar
  200. 200.
    Shiigi Y, Takahashi H, Kaneto H (1990) Facilitation of memory retrieval by pretest morphine mediated by mu but not delta and kappa opioid receptors. Psychopharmacol (Berl) 102: 329–332CrossRefGoogle Scholar
  201. 201.
    Bruins-Slot LA, Colpaert FC (1999) Opiate state of memory: receptor mechanisms. J Neurosci 19: 10520–10529PubMedGoogle Scholar
  202. 202.
    Khavandgar S, Homayoun H, Torkaman-Boutorabi A, Zarrindast MR (2002) The effects of adenosine receptor agonists and antagonists on morphine state-dependent memory of passive avoidance. Neurobiol Learn Mem 78: 390–405PubMedCrossRefGoogle Scholar
  203. 203.
    Introini-Collison IB, Baratti CM (1984) The impairment of retention induced by beta-endorphin in mice may be a reduction of central cholinergic activity. Behav Neural Biol 41: 152–163CrossRefGoogle Scholar
  204. 204.
    Ragozzino ME, Gold PE (1994) Task-dependent effects of intra-amygdala morphine injections: attenuation by intra-amygdala glucose injections. J Neurosci 14: 7478–7485PubMedGoogle Scholar
  205. 205.
    Tyce GM, Yaksh TL (1981) Monoamine release from cat spinal cord by somatic stimuli: an intrinsic modulatory system. J Physiol 314: 513–529PubMedGoogle Scholar
  206. 206.
    Yaksh TL, Dirksen R, Harty GJ (1985) Antinociceptive effects of intrathecally injected cholinomimetic drugs in the rat and cat. Eur J Pharmacol 117: 81–88PubMedCrossRefGoogle Scholar
  207. 207.
    Dirksen R, Nijhuts GMM (1983) The relevance of cholinergic transmission blockade at the spinal level to opiate effectiveness. Eur J Pharmacol 91: 215–221PubMedCrossRefGoogle Scholar
  208. 208.
    Bouaziz H, Tong CY, Yoon Y, Hood DD, Eisenach JC (1996) Intravenous opioids stimulate norepinephrine and acetylcholine release in spinal cord dorsal horn—systematic studies in sheep and an observa tion in a human. Anesthesiology 84: 143–154PubMedCrossRefGoogle Scholar
  209. 209.
    Baratti CM, Introini IB, Huygens P (1984) Possible interaction between centralcholinergic muscarinic and opioid peptidergic systems during memory consolidation in mice. Behav Neural Biol 40: 155–169PubMedCrossRefGoogle Scholar
  210. 210.
    Heijna MH, Padt M, Hogenboom F, Portoghese PS, Mulder AH, Schoffelmeer ANM (1990) Opioid receptor-mediated inhibition of dopamine andacetylcholine release from slices of rat nucleus accumbens, olfactorytubercle and frontal cortex. Eur J Pharmacol 181: 267–278PubMedCrossRefGoogle Scholar
  211. 211.
    Ragozzino ME, Gold PE (1995) Glucose injections into the medial septum reverse the effects of intraseptal morphine infusions on hippocampal acetylcholine output and memory. Neuroscience 68: 981–988PubMedCrossRefGoogle Scholar
  212. 212.
    Lapchak PA, Araujo DM, Collier B (1989) Regulation of endogenous acetylcholine release from mammalian brain slices by opiate receptors: hippocampus, striatum and cerebral cortex of guinea pig and rat. Neuroscience 31: 313–325PubMedCrossRefGoogle Scholar
  213. 213.
    Rada P, Mark GP, Pothos E, Hoebel BG (1991) Systemic morphine simultaneously decreases extracellular acetylcholine and increases dopamine in the nucleus accumbens of freely moving rats. Neuropharmacol 30: 1133–1136CrossRefGoogle Scholar
  214. 214.
    Li Z, Wu CF, Pei G, Xu NJ (2001) Reversal of morphine-induced memory impairment in mice by withdrawal in Morris water maze. Possible involvement of cholinergic system. Pharmacol Biochem Behav 68: 507–513PubMedCrossRefGoogle Scholar
  215. 215.
    Roozendaal B (2000) Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinol 25: 213–238CrossRefGoogle Scholar
  216. 216.
    Yau JL, Noble J, Seckl JR (1999) Continuous blockade of brain mineralocorticoid receptors impairs spatial learning in rats. Neurosci Lett 277: 45–48PubMedCrossRefGoogle Scholar
  217. 217.
    Sanberg PR, Fibiger HC(1979) Impaired acquisition and retention of a passive avoidance response after chronic ingestion of taurine. Psychopharmacol (Berl) 62: 97–99CrossRefGoogle Scholar
  218. 218.
    McNamara MG, Kelly JP, Leonard BE (1995) Some behavioural and neurochemical aspects of subacute (+/−)3.4-methylenedioxyamphetamine administration in rats. Pharmacol Biochem Behav 52: 479–484PubMedCrossRefGoogle Scholar
  219. 219.
    Barros DM, Izquierdo LA, Medina JH, Izquierdo I (2002) Bupropion and sertraline enhance retrieval of recent and remote long-term memory in rats. Behav Pharmacol 13: 215–220PubMedGoogle Scholar
  220. 220.
    Jafari MR, Zarrindast MR, Djahanguiri B (2004) Effects of different doses of glucose and insulin on morphine state dependent memory of passive avoidance in mice. Psychopharmacol (Berl) 175: 457–462Google Scholar
  221. 221.
    White NM (1991) Peripheral and central memory enhancing actions of glucose. In: Hogrefe and Huber (eds): Peripheral signaling of the brain: role in neural-immune interactions, learning and memory. Frederickson R.C.A. Toronto, 421–442Google Scholar
  222. 222.
    Kopf SR, Buchholzer ML, Hilgert K, Loffelholtz K, Klein J (2001) Glucose plus choline improve passive avoidance behaviour and increase hippocampal acetylcholine release in mice. Neuroscience 103: 365–371PubMedCrossRefGoogle Scholar
  223. 223.
    Stone WS, Walser B, Gold SD, Gold PE (1991) Scopolamine-and morphine-induced impairments of spontaneous alteration performance in mice: reversal with glucose and with cholinergic and adrenergic agonists. Behav Neurosci 105: 264–271PubMedCrossRefGoogle Scholar
  224. 224.
    Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M (1999) Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K1 channels. Science 247: 852–854CrossRefGoogle Scholar
  225. 225.
    Stefani MR, Nicholson GM, Gold P (1999) ATP-sensitive potassium channel blockade enhances spontaneous alternation performance in the rat: a potential mechanism for glucose-mediated memory enhancement. Neuroscience 93: 557–563PubMedCrossRefGoogle Scholar
  226. 226.
    Vianna MR, Barros DM, Silva T, Choi H, Madche C, Rodrigues C, Medina JH, Izquierdo I (2000) Pharmacological demonstration of the differential involvement of protein kinase C isoforms in short-and long-term memory formation and retrieval of one-trial avoidance in rats. Psychopharmacol (Berl) 150: 77–84CrossRefGoogle Scholar
  227. 227.
    Narita M, Takahashi Y, Suzuki T, Misawa M, Nagasa H (1993) An ATP-sensitive potassium channel blocker abolishes the potentiating effect of morphine on the bicucullineinduced convulsion in mice. Psychopharmacol 110: 500–502CrossRefGoogle Scholar
  228. 228.
    Ocana M, Pozo EP, Barrios M, Robles LI, Baeyens JM (1990) An ATP-dependent potassium channel blocker antagonizes morphine analgesia. Eur J Pharmacol 86: 77–78Google Scholar
  229. 229.
    Raffa BR, Martinez P (1995) The glibenclamide-shift of centrally-acting antinociceptive agents in mice. Brain Res 677: 277–282PubMedCrossRefGoogle Scholar
  230. 230.
    Werz MA, MacDonald RL (1983) Opioid peptides with different affinity for mu and delta receptors decrease sensory neuron calcium-dependent action potentials. J Pharmacol Exp Ther 227: 394–402PubMedGoogle Scholar
  231. 231.
    North RA (1989) Twelfth Gaddum memorial lecture. Drug receptors and the inhibition of nerve cells. Br J Pharmacol 98: 13–28PubMedGoogle Scholar
  232. 232.
    Zarrindast MR, Jafari MR, Ahmadi S, Djahanguiri B (2004) Influence of central administration ATP-dependent K+ channel on morphine state-dependent memory of passive avoidance. Eur J Pharmacol 487: 143–148PubMedCrossRefGoogle Scholar
  233. 233.
    Stefani MR, Gold PE (2001) Intrahyppocampal infusion of KATP channel modulators influence spontaneous alteration performance: relationships to acethylcholine release in the hippocampus. J Neurosci 15: 609–614Google Scholar
  234. 234.
    Sebastião AM, Ribeiro JA (2000) Fine-tuning neuromodulation by adenosine. TIPS 21: 341–346PubMedGoogle Scholar
  235. 235.
    Hauber W, Bareib A (2001) Facilitative effects of an adenosine A1/A2 receptor blockade on spatial memory performance of rats: selective enhancement of reference retention during the light period. Behav Brain Res 118: 43–52PubMedCrossRefGoogle Scholar
  236. 236.
    Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38: 107–125PubMedCrossRefGoogle Scholar
  237. 237.
    Sebastião AM, Ribeiro JA (1996) AdenosineA2 receptors-mediated excitability actions on the nervous system. Prog Neurobiol 48: 167–189PubMedCrossRefGoogle Scholar
  238. 238.
    Murphy KM, Snyder SH (1982) Hetrogenity of adenosine A1 receptor binding in brain tissue. Mol Pharmacol 17: 139–179Google Scholar
  239. 239.
    Cunha RA, Johnsson B, Constantino MD, Sebastiao AM, Fredholm BB (1996) Evidence for high-affinity binding sites for the adenosine A2A receptor agonist [3H] CGS21680 in the rat hippocampus and cerebral cortex that are different from striatalA2A receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 353: 261–271CrossRefGoogle Scholar
  240. 240.
    Rosin DI, Robeva A, Woodard RI, Guyenet PG, Linden J (1998) Immunohistochemical localization of adenosineA2A receptors in the rat central nervous system. J Comp Neurol 401: 163–186PubMedCrossRefGoogle Scholar
  241. 241.
    Cunha RA, Sebastiao AM, Ribeiro JA (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J Neurosci 18: 1987–1995PubMedGoogle Scholar
  242. 242.
    De Mendonça A, Sebastiao AM, Ribeiro JA (1995) Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuro Report 6: 1097–1100Google Scholar
  243. 243.
    Cunha RA, Constantino MD, Riberiro JA (1997) ZM241385 is an antagonist of the facilitatory responses produced by theA2A adenosine receptor agonists CGS21680 and HENECA in the rat hippocampus. Br J Pharmacol 122: 1279–1284PubMedCrossRefGoogle Scholar
  244. 244.
    De Mendonça A, Riberiro JA (1997) Adenosine and neuronal plasticity. Life Sci 60: 241–245Google Scholar
  245. 245.
    Homayoun H, Khavandgar S, Zarrindast MR (2001) Effects of adenosine receptor agonists and antagonists on pentylentetrazole-induced amnesia. Eur J Pharmacol 430: 289–294PubMedCrossRefGoogle Scholar
  246. 246.
    Zarrindast MR, Shafaghi B (1994) Effects of adenosine receptor agonists and antagonists on acquisition of passive avoidance learning. Eur J Pharmacol 256: 233–239PubMedCrossRefGoogle Scholar
  247. 247.
    Pereira GS, Mello e Souza T, Vinade ERC, Choi H, Rodrigues C, Battastini AMO, Izquierdo I, Sarkis JJF, Bonan CD (2002) Blockade of adenosine A1 receptors in the posterior cingulate cortex facilitates memory in rats. Eur J Pharmacol 437: 151–154PubMedCrossRefGoogle Scholar
  248. 248.
    Hung PL, Lai MC, Yang SN, Wang CL, Liou CW, Wu MC, Wang TJ, Huang LT (2002) Aminophylline exacerbates status epilepticus-induced neuronal damages in immature rats: a morphological, motor and behavioral study. Epilepsy Res 49: 218–225PubMedCrossRefGoogle Scholar
  249. 249.
    Von Lubitz DKJE, Beenhakker M, Lin RCS, Carter MF, Paul SIA, Bischofberger N, Jacobson KA (1996) Reduction of postischemic brain damage and memory deficits following treatment with the selective adenosine A1 receptor agonist. Eur J Pharmacol 302: 43–48CrossRefGoogle Scholar
  250. 250.
    Tchekalarova J, Kambourova T, Georgiev V (2001) Interaction between angiotensin IV and adenosineA1 receptor related drugs in passive avoidance conditioning in rats. Behav Brain Res 123: 113–116PubMedCrossRefGoogle Scholar
  251. 251.
    Kopf SR, Melani A, Pedata F, Pepeu G (1999) Adenosine and memory storage: effect of A1 and A2 receptor antagonists. Psychopharmacol 146: 214–219CrossRefGoogle Scholar
  252. 252.
    Dockray GJ (1976) Immunochemical evidence of cholecystokinin like peptide in brain. Nature 264: 568–570PubMedCrossRefGoogle Scholar
  253. 253.
    Wank SA, Pisegna JR, De Weerth A (1992) Brain and gastrointestinal cholecystokinin receptor family: structure and functional expression. Proc Natl Acad Sci USA 89:8691–8695PubMedCrossRefGoogle Scholar
  254. 254.
    Lee YM, Beinborn M, McBride EW, Lu M, Kolakowski Jr LF, Kopin AS (1993) The human brain cholecystokinin-B/gastrin receptor. Cloning and characterization. J Biol Chem 268: 8164–8169PubMedGoogle Scholar
  255. 255.
    Hill DR, Camphell NJ, Shaw TM, Woodruff GM (1987) Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in rat CNS using highly selective nonpeptide CCK antagonists. J Neureosci 7: 2967–2976Google Scholar
  256. 256.
    Mercer LD, Beart PM (1997) Histochemistry in rat brain and spinal cord with an antibody directed at the cholecystokinin A receptor. Neurosci Lett 225: 97–100PubMedCrossRefGoogle Scholar
  257. 257.
    Hill DR, Shaw TN, Graham W, Woodruff GN (1990) Autoradiographical detection of CCK-A receptors in primate brain using 125I-Bolton Hunter CCK-8 and 3H-MK 329. J Neurosci 10: 1070–1081PubMedGoogle Scholar
  258. 258.
    Crawley JN (1984) Cholecystokinin accelerates the rate of habituation to a novel environment. Pharmacol Biochem Behav 20: 23–27PubMedCrossRefGoogle Scholar
  259. 259.
    Daugé V, Roques BP (1995) Opioid and CCK systems in anxiety and reward. In: Bradwejn J, Vasar E (eds) Cholecystokinin and anxiety: from neuron to behavior. R.G. Landes Company, Austin, 151–171Google Scholar
  260. 260.
    Ding XZ, Bayer BM (1993) Increases in CCK mRNA and peptide in different brain area following acute and chronic administration of morphine. Brain Res 625: 139–144PubMedCrossRefGoogle Scholar
  261. 261.
    Katsuura G, Itoh S (1986) Preventive effect of cholecystokinin octapeptide on experimental amnesia in rats. Peptides 7: 105–110PubMedCrossRefGoogle Scholar
  262. 262.
    Itoh S, Lal H (1990) Influences of cholecystokinin and analogues on memory processes. Drug Rev Res 21: 257–276CrossRefGoogle Scholar
  263. 263.
    Daugé V, Léna I (1998) CCK in anxiety and cognitive processes. Neurosc Biochem Rev 22: 815–825CrossRefGoogle Scholar
  264. 264.
    Derrien M, Daugé V, Blommaert A, Roques BP (1994) The selective CCK-B agonist, BC 264, impairs socially reinforced memory in the three runaway test in rats. Behav Brain Res 65: 139–146PubMedCrossRefGoogle Scholar
  265. 265.
    Kadar T, Fekete M, Telegdy G (1981) Modulation of passive avoidance behavior of rats by intracerebroventricular administration of cholecystokinin sulfate ester and nonsulfated cholecystokinin octapeptide. Acta Physiol Acad Sci Hung 58: 269–274PubMedGoogle Scholar
  266. 266.
    Harro J, Orland L (1993) Cholecystokinin receptors and memory: a radial maze study. Pharmacol Biochem Behav 44: 509–517PubMedCrossRefGoogle Scholar
  267. 267.
    Lemaire M, Bohme GA, Piot O, Roques BP, Blanchard JC (1994) CCK-A and CCK-B selective receptor agonists and antagonists modulate olfactory recognition in male rats. Psychopharmacol 115: 435–440CrossRefGoogle Scholar
  268. 268.
    Nomoto S, Miyake M, Ohta M, Funakoshi A, Miyaksaka K (1999) Impaired learning and memory OLETF rats without cholecystokinin (CCK)-A receptor. Physiol Behav 66:869–872PubMedCrossRefGoogle Scholar
  269. 269.
    Daugé V, Pophillat M, Creté D, Melik-Parsadaniantz S, Roques P (2003) Involvement of brain endogenous cholecystokinin in stress-induced impairment of spatial recognition memory. Neuroscience 118: 19–23PubMedCrossRefGoogle Scholar
  270. 270.
    Katsuura G, Itoh S (1986) Passive avoidance deficit following intracerebroventricular administration of cholecystokinin tetrapeptide amide in rats. Peptides 7: 809–814PubMedCrossRefGoogle Scholar
  271. 271.
    Shlik J, Koszycki D, Bradwejn J (1998) Decrease in short-term memory function induced by CCK-4 in healthy volunteers. Peptides 19: 969–975PubMedCrossRefGoogle Scholar
  272. 272.
    Ladurelle N, Keller G, Blommaert A, Roques BP, Daugé V (1997) The CCK-B agonist, BC 264, increases dopamine in the nucleus accumbens and facilitates motivation and attention after intraperitoneal injection in rats. Eur J Neurosci 9: 1804–1814PubMedCrossRefGoogle Scholar
  273. 273.
    Millon ME, Léna I, DaNascrimento S, Noble F, Daugé V, Garbay C, Roques BP (1997) Development of new potent agonists able to interact with two postulated subsites of the cholecystokinin CCK-B receptor. Lett Peptide Sci 4: 407–410Google Scholar
  274. 274.
    Léna I, Simon H, Roques BP, Daugé V (1999) Opposing effects of two selective CCK-B agonists, on the retrieval phase of a two-trial memory task after systemic injection in the rat. Neuropharmacology 38: 543–553PubMedCrossRefGoogle Scholar
  275. 275.
    Taghzouti K, Léna I, Dellu F, Roques BP, Daugé V, Simon H (1999) Cognitive enhancing effects in young and old rats of pBC 264, a selective CCK-B receptor agonist. Psychpharmacol 143: 141–149CrossRefGoogle Scholar
  276. 276.
    Daugé V, Derrien M, Blanchard JC, Roques BP (1992) The selective CCK-B agonist BC 264 injected in the anteralateral part of the nucleus accumbens, reduced the spontaneous alteration behaviour of rats. Neuropsychopharmacol 31: 67–75CrossRefGoogle Scholar
  277. 277.
    Ladurelle N, Keller G, Roques BP, Daugé V (1993) Effects of CCK8 and of the CCKB selective agonist BC 264 on extracellular dopamine content in the anterior nucleus accumbens: a microdialysis study in freely moving rats. Brain Res 628: 254–262PubMedCrossRefGoogle Scholar
  278. 278.
    Sebret A, Léna I, Crété D, Matsui T, Roques BP, Daugé V (1999) Rat hippocampal neurons are critically involved in physiological improvement of memory processes induced by cholecystokinin-B receptor stimulation. J Neurosci 19: 7230–7237PubMedGoogle Scholar
  279. 279.
    Winnicka MM, Wisniewski K (1999) Dopaminergic projection to the central amygdala mediates the facilitatory effect of CCK-8US and caerulein on memory in rats. Pharmacol Res 39: 445–450PubMedCrossRefGoogle Scholar
  280. 280.
    Winnicka MM, Wisniewski K (2000) Bilateral 6-OHDA lesions to the hippocampus attenuate the facilitatory effect of CCK-8US and caerulein on memory in rats. Pharmacol Res 41: 347–353PubMedCrossRefGoogle Scholar
  281. 281.
    Vincent SR (1994) Nitric oxide:Aradical neurotransmitter in the central nervous system. Prog Neurobiol 42: 129–160PubMedCrossRefGoogle Scholar
  282. 282.
    Moncada S (1992) The L-arginine: nitric-oxide pathway. Acta Physiol Scand 145: 201–227PubMedGoogle Scholar
  283. 283.
    Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336: 385–388PubMedCrossRefGoogle Scholar
  284. 284.
    Garthwaite J, Garthwaite G, Palmer RMJ, Moncada S (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharm 172: 413–416CrossRefGoogle Scholar
  285. 285.
    East SJ, Garthwaite J (1991) NMDA receptor activation in rat hippocampus induces cyclic GMP formation through the L-arginine-nitric oxide pathway. Neurosci Lett 123: 17–19PubMedCrossRefGoogle Scholar
  286. 286.
    Haley JE, Wilcox GL, Chapman PF (1992) The role of nitric oxide in hippocampal long-term potentiation. Neuron 8: 211–216PubMedCrossRefGoogle Scholar
  287. 287.
    Haley JE, Schuman EM (1994) Involvement of nitric oxide in synaptic plasticity and learning. Neurosciences 6: 11–20CrossRefGoogle Scholar
  288. 288.
    Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39PubMedCrossRefGoogle Scholar
  289. 289.
    Böhme GA, Bon C, Stutzman JM, Doble A, Blanchard JC (1991) Possible involvement of nitric oxide in long-term potentiation. Eur J Pharmacol 199: 379–381PubMedCrossRefGoogle Scholar
  290. 290.
    Pitsikas N, Rigamonti AE, Cella SG, Muller EE (2002) Effects of the nitric oxide donor molsidomine on different memory components as assessed in the object-recognition task in the rat. Psychopharmacol 162: 239–245CrossRefGoogle Scholar
  291. 291.
    Zhang S, Chen J, Wang S (1998) Spatial learning and memory induce up-regulation of nitric oxide-producing neurons in rat brain. Brain Res 801: 101–106PubMedCrossRefGoogle Scholar
  292. 292.
    Telegdy G, Kokavszky R (1997) The role of nitric oxide in passive avoidance learning. Neuropharmacol 36: 1583–1587CrossRefGoogle Scholar
  293. 293.
    Colingridge GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41: 143–210Google Scholar
  294. 294.
    Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 31–108PubMedCrossRefGoogle Scholar
  295. 295.
    Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54: 581–618PubMedCrossRefGoogle Scholar
  296. 296.
    Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54: 369–415PubMedCrossRefGoogle Scholar
  297. 297.
    Pláteník J, Kuramoto N, Yoneda Y (2000) Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci 67: 335–364PubMedCrossRefGoogle Scholar
  298. 298.
    Riedel G, Platt B, micheau J (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140: 1–47PubMedCrossRefGoogle Scholar
  299. 299.
    Storm-Mathisen J, Leknes AK, Bore A, Vaaland JL, Edminson P, Haug FMS, Ottersen OP (1983) First visualisation of glutamate and GABA in neurones by immunocytochemistry. Nature 301: 517–520PubMedCrossRefGoogle Scholar
  300. 300.
    Storm-Mathisen J, Danbolt NC, Ottersen OP (1995) Localization of glutamate and its membrane transport proteins. In: Stone TW (eds): CNS neurotransmitters and neuromodulators. CRC Press, Boca Raton, 1–18Google Scholar
  301. 301.
    Ellison G (1995) The N-methyl-D-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res Rev 20: 250–267PubMedCrossRefGoogle Scholar
  302. 302.
    Pellicciari R, Costantino G (1999) Metabotropic G-protein coupled glutamate receptors as therapeutic targets. Curr Opp Chem Biol 3: 433–440CrossRefGoogle Scholar
  303. 303.
    Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Ann Rev Neurosci 19: 437–462PubMedCrossRefGoogle Scholar
  304. 304.
    Riedel G, Wetzel W, Reymann KG (1996) Comparing the role of metabotropic glutamate receptors in long-term potentiation and in learning and memory. Progr Neuropharmacol Biol Psychiatr 20: 761–789CrossRefGoogle Scholar
  305. 305.
    Riedel G, Reymann KG (1996) Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory. Acta Physiol Scand 157: 1–19PubMedCrossRefGoogle Scholar
  306. 306.
    Danysz W, Zajaczkowski W, Parsons CG (1995) Modulation of learning processes by ionotropic glutamate receptor ligangds. Behav Pharmacol 6: 455–474PubMedGoogle Scholar
  307. 307.
    Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319: 774–776PubMedCrossRefGoogle Scholar
  308. 308.
    Upchurch M, Wehner JM (1990) Effects of N-methyl-D-aspartate antagonism on spatial learning in mice. Psychopharmacol 100: 209–214CrossRefGoogle Scholar
  309. 309.
    Saucier D, Cain DP (1995) Spatial learning without NMDA receptor-dependent long-term potentiation. Nature 378: 186–189PubMedCrossRefGoogle Scholar
  310. 310.
    Lyfold GL, Jarrard LE (1991) Effects of the competitive NMDA antagonist CPP on performance of a place and cue radial maze task. Psychobiol 19: 157–160Google Scholar
  311. 311.
    Caramanos Z Shapiro ML (1994) Spatial memory and N-methyl-D-aspartate receptor antagonists APV and MK-801: memory impairments depend on familiarity with the environment, drug dose, and training duration. Behav Neurosci 108: 30–43PubMedCrossRefGoogle Scholar
  312. 312.
    Ungerer A, Mathis C, Mélan C (1998) Are glutamate receptors specially implicated in some forms of memory processes? Exp Brain Res 123: 45–51PubMedCrossRefGoogle Scholar
  313. 313.
    Annett LE, McGregor A, Robbins TW (1989) The effects of ibotenic acid lesion of the nucleus accumbens on spatial learning and extinction in the rat. Behav Brain Res 31: 321–242CrossRefGoogle Scholar
  314. 314.
    Floresco SB, Seamans JK, Phillips AG (1996) Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on acquisition and retention of spatial information. Behav Brain Res 81: 163–171PubMedCrossRefGoogle Scholar
  315. 315.
    Maldonado-Irizarry CS, Kelley AE (1994) Differential behavioral effects following microinjection of an NMDA receptor antagonist into nucleus accumbens subregions. Psychopharmacol 116: 65–72CrossRefGoogle Scholar
  316. 316.
    Maldonado-Irizarry CS, Kelley AE (1995) Excitatory amino acid receptors within nucleus accumbens subregions differentially mediate spatial learning in rat. Behav Pharmacol 6: 527–539PubMedGoogle Scholar
  317. 317.
    Ploeger GE, Spuijit BM, Cools AR (1994) Spatial localization in the Morris water maze in rats: acquisition is affected by intra-accumbens injections of dopamine antagonist haloperidol. Behav Neurosci 108: 927–934PubMedCrossRefGoogle Scholar
  318. 318.
    Schacter GB, Yang CR, Innis NK, Mogenson GJ (1989) The role of the hippocampusnucleus accumbens pathway in radial-arm maze performance. Brain Res 494: 339–349PubMedCrossRefGoogle Scholar
  319. 319.
    Seaman JK, Phillips AG (1994) Selective memory impairments produced by transient lidocaine-induced lesions of the nucleus accumbens in rats. Behav Neurosci 108: 456–468CrossRefGoogle Scholar
  320. 320.
    Schwarez R, Hockfeld T, Fuxe K, Jonsson G, Goldtein M, Terenius L (1979) Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study. Exp Brain Res 37: 199–216Google Scholar
  321. 321.
    Adriani W, Felici A, Sargolini F, Roullet P, Usiello A, Oliverio A, Mele A (1998) Nmethyl-D-aspartate and dopamine receptor involvement in the modulation of locomotor activity and memory processes. Exp Brain Res 123: 52–59PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2006

Authors and Affiliations

  • Mohammad R. Zarrindast
    • 1
  1. 1.Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran

Personalised recommendations