Function and dysfunction of monoamine interactions in children and adolescents with AD/HD

  • Robert D. Oades
Part of the Experientia Supplementum book series (EXS, volume 98)


Mismatch Negativity Delay Aver Methylphenidate Treatment Dopamine Transporter Gene Hyperkinetic Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. Washington, D.C.Google Scholar
  2. 2.
    Swanson JM, Sergeant JA, Taylor EA, Sonuga-Barke EJS, Jensen PS, Cantwell DP (1998) Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 351: 429–432PubMedCrossRefGoogle Scholar
  3. 3.
    Smith AB, Taylor EA (2006) Response inhibition and hyperactivity in clinical and nonclinical populations: a meta-analysis using the stop task. In: Oades RD (ed): Attentiondeficit/hyperactivity disorder and the hyperkinetic syndrome: current ideas and ways forward. Hauppauge, New York: Nova Science Publishing Inc., 203–225Google Scholar
  4. 4.
    Johnstone SJ, Barry RJ, Anderson JW (2001) Topographic distribution and developmental timecourse of auditory event-related potentials in two subtypes of attention-deficit hyperactivity disorder. Int J Psychophysiol 42: 73–94PubMedCrossRefGoogle Scholar
  5. 5.
    Levy F (2004) Synaptic gating and ADHD: a biological theory of comorbidity of ADHD and anxiety. Neuropsychopharmacol 29: 1589–1596CrossRefGoogle Scholar
  6. 6.
    Banaschewski T, Brandeis D, Heinrich H, Albrecht B, Brunner E, Rothenberger A (2003) Association of ADHD and conduct disorder-brain electrical evidence for the existence of a distinct subtype. J Child Psychol Psychiat 44: 356–376PubMedCrossRefGoogle Scholar
  7. 7.
    Rubia K, Asherson P, Taylor EA, Curran S (2006) Association between the 7-repeat allele of the dopamine D4 receptor gene and specific impulsivity measures in attention deficit hyperactivity disorder (ADHD). In: Oades RD (ed): Attention-deficit/hyperactivity disorder and the hyperkinetic syndrome: current ideas and ways forward. Hauppauge, New York: Nova Science Publishing, Inc.. 187–201Google Scholar
  8. 8.
    Clarke AR, Barry RJ, McCarthy R, Selikowitz M (2002) EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 112: 2098–2105CrossRefGoogle Scholar
  9. 9.
    Clarke AR, Barry RJ, McCarthy R, Selikowitz M, Croft RJ (2002) EEG differences between good and poor responders to methylphenidate in boys with the inattentive type of attention-deficit/hyperactivity disorder. Clin Neurophysiol 113: 1191–1198PubMedCrossRefGoogle Scholar
  10. 10.
    Konrad K, Günther T, Hanisch C, Herpertz-Dahlmann B (2004) Differential effects of methylphenidate on attentional functions in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiat 43: 191–198CrossRefGoogle Scholar
  11. 11.
    Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nature Reviews: Neuroscience 3: 617–628PubMedGoogle Scholar
  12. 12.
    Piek JP, Dyck MJ, Nieman A, Anderson A, Hay D, Smith LM, McCoy M, Hallmayer J (2004) The relationship between motor coordination, executive functioning and attention in school aged children. Arch Clin Neuropsychol 19: 1063–1076PubMedCrossRefGoogle Scholar
  13. 13.
    Russell VA, Oades RD, Tannock R, Auerbach J, Killeen PR, Johansen EB, Sagvolden T (2006) Response variability in attention-deficit/hyperactivity disorder: a neuronal energetics hypothesis. BMC Behav Brain Functn, in pressGoogle Scholar
  14. 14.
    Brodeur DA, Pond M (2001) The development of selective attention in children with attention deficit hyperactivity disorder. J Abnorm Child Psychol 29: 229–239PubMedCrossRefGoogle Scholar
  15. 15.
    de Sonneville LMJ, Njiokiktjien C, Bos H (1994) Methylphenidate and information processing. Part 1: Differentiation between responders and nonresponders; Part 2: Efficacy in responders. J Clin Exp Neuropsychol 16: 877–897PubMedGoogle Scholar
  16. 16.
    Oades RD (2000) Differential measures of sustained attention in children with attentiondeficit/hyperactivity or tic disorders: relationship to monoamine metabolism. Psychiat Res 93: 165–178CrossRefGoogle Scholar
  17. 17.
    Konrad K (2006) Catecholamines and attentional function in children with ADHD. In: Oades RD (ed) Attention-deficit/hyperactivity disorder and the hyperkinetic syndrome: current ideas and ways forward. Hauppauge, New York: Nova Science Publishers Inc., 155–169Google Scholar
  18. 18.
    Rubia K, Smith AB, Woolley J, Nosarti C, Heyman I, Taylor E, Brammer M (2006) Progressive increases of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Hum Brain Mapp DOI 10.1002/hbm.20237Google Scholar
  19. 19.
    Wiersema JR, van der Meere JJ, Roeyers H (2005) ERP correlates of impaired error monitoring in children with ADHD. J Neur Trans 112: 1417–1430CrossRefGoogle Scholar
  20. 20.
    Sonuga-Barke EJS, Dalen L, Remington B (2003) Do executive deficits and delay aversion make independent contributions to preschool attention-deficit/hyperactivity disorder symptoms? J Am Acad Child Adolesc Psychiat 42: 1335–1342CrossRefGoogle Scholar
  21. 21.
    Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC (2001) Psychiatric aspects of impulsivity. Am J Psychiat 158: 1783–1793PubMedCrossRefGoogle Scholar
  22. 22.
    Oades RD, Slusarek M, Velling S, Bondy B (2002) Serotonin platelet-transporter measures in childhood attention-deficit/hyperactivity disorder (ADHD): clinical versus experimental measures of impulsivity. World J Biol Psychiatry 3: 96–100PubMedGoogle Scholar
  23. 23.
    Nigg JT, Blaskey LG, Huang-Pollock CL, Rappley MD (2002) Neuropsychological executive functions and DSM-IV ADHD subtypes. J Am Acad Child Adolesc Psychiat 41: 59–66CrossRefGoogle Scholar
  24. 24.
    Barry RJ, Clarke AR, McCarthy R, Selikowitz M, Brown CR (2006) Event related potentials in two DSM-IV subtypes of attention-deficit/hyperactivity disorder: An investigation using a combined modality auditory/visual oddball task. In: Oades RD (ed): Attention-deficit/hyperactivity disorder and the hyperkinetic syndrome: current ideas and ways forward. Hauppauge, New York: Nova Science Publishers Inc., 229–247Google Scholar
  25. 25.
    Brown CR, Clarke AR, Barry RJ, McCarthy R, Selikowitz M, Magee C (2005) Event related potentials in attention-deficit/hyperactivity disorder of the predominantly-innatentive type: An investigation of EEG-defined subtypes. Int J Psychophysiol 58: 94–107PubMedCrossRefGoogle Scholar
  26. 26.
    Oades RD, Dittmann-Balcar A, Schepker R, Eggers C (1996) Auditory event-related potentials and mismatch negativity in healthy children and those with attention-deficitor Tourette-like symptoms. Biol Psychol 43: 163–185PubMedCrossRefGoogle Scholar
  27. 27.
    Lazzaro I, Whitmont GE, Meares R, Clarke S (2001) The modulation of late component event related potentials by pre-stimulus EEG theta activity in ADHD. Int J Neurosci 107: 247–264PubMedGoogle Scholar
  28. 28.
    Brandeis D, Banaschewski T, Baving L, Georgiewa P, Blanz B, Schmidt MH, Warnke A, Steinhausen H-C, Rothenberger A, Scheuerpflug P (2002) Multicenter P300 brain mapping of impaired attention to cues in hyperkinetic children. JAm Acad Child Psychiat 41: 990–998CrossRefGoogle Scholar
  29. 29.
    Kemner C, Jonkman LM, Kenemans JL, Böcker KBE, Verbaten MN, van Engeland H (2004) Sources of auditory selective attention and the effects of methylphenidate in children with attention-deficit/hyperactivity disorder. Biol Psychiat 55: 776–778PubMedCrossRefGoogle Scholar
  30. 30.
    Liotti M, Pliszka SR, Perez R, Kothmann D, Woldorff MG (2005) Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex 41: 377–388PubMedGoogle Scholar
  31. 31.
    Steger J, Imhof K, Steinhausen H-C, Brandeis D (2000) Brain mapping of bilateral interactions in attention deficit hyperactivity disorder and control boys. Clin Neurophysiol 111: 1141–1156PubMedCrossRefGoogle Scholar
  32. 32.
    Kanemura H, Aihara M, Aoki S, Araki T, Nakazawa S (2003) Development of the (prefrontal lobe in infants and children: a three-dimensional magnetic resonance volumetric study. Brain Dev 25: 195–199PubMedCrossRefGoogle Scholar
  33. 33.
    Huttenlocher PR, de Courten C, Garey LA, van der Loos H (1982) Synaptogenesis in human visual cortex-evidence for synaptic elimination during normal development. Neurosci Lett 33: 247–252PubMedCrossRefGoogle Scholar
  34. 34.
    O’Donnell S, Noseworthy MD, Levine B, Dennis M (2005) Cortical thickness of the frontopolar area in typically developing children and adolescents. Neuroimage 24: 948–954PubMedCrossRefGoogle Scholar
  35. 35.
    Blanton RE, Levitt JG, Peterson JR, Sporty ML, Lee M, To D, Mormino EC, Thompson PM, McCracken JT, Toga AW (2004) Gender differences in the left inferior frontal gyrus in normal children. Neuroimage 22: 626–636PubMedCrossRefGoogle Scholar
  36. 36.
    Sowell ER, Jernigan TL (1998) Further MRI evidence of late brain maturation: limbic volume increases and changing asymmetries during childhood and adolescence. Dev Neuropsychol 14: 599–617Google Scholar
  37. 37.
    Sowell ER, Trauner DA, Gamst A, Jernigan TL (2002) Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol 44: 4–16PubMedCrossRefGoogle Scholar
  38. 38.
    Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH, Clasen LS, Toga AW et al. (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci (USA) 101: 8174–8179CrossRefGoogle Scholar
  39. 39.
    Wild-Wall N, Oades RD, Juran SA (2005) Maturation processes in automatic change detection as revealed by event-related brain potentials and dipole source localization: Significance for adult AD/HD. Int J Psychophysiol 58: 34–46PubMedCrossRefGoogle Scholar
  40. 40.
    Bartzokis G, Nuechterlein KH, Gitlin M, Rogers S, Mintz J (2003) Dysregulated brain development in adult men with schizophrenia: a magnetic resonance imaging study. Biol Psychiat 53: 412–421PubMedCrossRefGoogle Scholar
  41. 41.
    Lambert J, Bard C (2005) Acquisition of visuomanual skills and improvement of information processing capacities in 6-to 10-year-old children performing a 2D pointing task. Neurosci Lett 377: 1–6PubMedCrossRefGoogle Scholar
  42. 42.
    Rival C, Ceyte H, Olivier I (2005) Developmental changes of static standing balance in children. Neurosci Lett 376: 133–136PubMedCrossRefGoogle Scholar
  43. 43.
    Rueda MR, Fan J, McCandliss BD, Halparin JD, Gruber DB, Lercari LP, Posner MI (2004) Development of attentional networks in childhood. Neuropsychologia 42: 1029–1040PubMedCrossRefGoogle Scholar
  44. 44.
    Spear L (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24: 417–463PubMedCrossRefGoogle Scholar
  45. 45.
    Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA (2004) Maturation of cognitive processes from late childhood to adulthood. Child Dev 75: 1357–1372PubMedCrossRefGoogle Scholar
  46. 46.
    Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN, Castellanos FX, Haxby JV, Noll DC, Cohen JD et al. (1997) A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. J Cog Neurosci 9: 835–847CrossRefGoogle Scholar
  47. 47.
    Ladouceur CD, Dahl RE, Carter CS (2004) ERP correlates of action monitoring in adolescence. Ann NY Acad Sci 1021: 329–336PubMedCrossRefGoogle Scholar
  48. 48.
    Sharma A, Kraus N, McGee TJ, Nicol TG (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. EEG Clin Neurophysiol 104: 540–545Google Scholar
  49. 49.
    Marshall PJ, Bar-Haim Y, Fox NA (2003) The development of P50 suppression in the auditory event-related potential. Int J Psychophysiol 51: 135–141CrossRefGoogle Scholar
  50. 50.
    Freedman R, Adler LE, Waldo MC (1987) Gating of the auditory evoked potential in children and adults. Psychophysiol 24: 223–227Google Scholar
  51. 51.
    Oades RD, Dittmann-Balcar A, Zerbin D (1997) Development and topography of auditory event-related potentials, mismatch and processing negativity from 8 to 22 years of age. Psychophysiol 34: 677–693Google Scholar
  52. 52.
    Albrecht R, von Suchodoletz W, Uwer R (2000) The development of auditory evoked dipole source activity from childhood to adulthood. Clin Neurophysiol 111: 2268–2276PubMedCrossRefGoogle Scholar
  53. 53.
    Polich J, Ladish C, Burns T (1990) Normal variation of P300 in children: age, memory span, and head size. Int J Psychophysiol 9: 237–248PubMedCrossRefGoogle Scholar
  54. 54.
    Enoki H, Sanada S, Yoshinaga H, Oka E, Ohtahara S (1993) The effects of age on the N200 component of the auditory event-related potentials. Cogn Brain Res 1: 161–167CrossRefGoogle Scholar
  55. 55.
    Oades RD, Halliday GM (1987) The ventral tegmental (A 10) system. Neurobiology I: anatomy and connectivity. Brain Res Rev 12: 117–165CrossRefGoogle Scholar
  56. 56.
    Lewis DA (2003) The catecholamine innervation of primate cerebral cortex. In: Solanto MV, Arnsten AFT, Castellanos FX (eds): Stimulant drugs and ADHD: basic and clinical neuroscience. Oxford: Oxford University Press, 77–103Google Scholar
  57. 57.
    Loughlin SE, Foote SL, Bloom FE (1986) Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neurosci 18: 291–306CrossRefGoogle Scholar
  58. 58.
    Svensson TH (2003) a-Adrenoceptor modulation hypothesis of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiat 27: 1145–1158CrossRefGoogle Scholar
  59. 59.
    Oades RD (2005) The role of norepinephrine and serotonin in ADHD. In: Gozal D, Molfese DL (eds): Attention deficit hyperactivity disorder: from genes to animal models to patients. Tootawa, NY: Humana Press, 97–130Google Scholar
  60. 60.
    Lewis DA, Foote SL, Goldstein M, Morrison JH (1988) The dopaminergic innervation of monkey prefrontal cortex: a tyrosine hydroxylase immunohistochemical study. Brain Res 449: 225–243PubMedCrossRefGoogle Scholar
  61. 61.
    Lucas G, Spampinato U (2000) Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of the in vivo dopamine outfow in the rat striatum. J Neurochem 74: 693–701PubMedCrossRefGoogle Scholar
  62. 62.
    Gobert A, Rivet J-M, Audinot V, Newman-Tancredi A, Cistarelli L, Millan MJ (1998) Simultaneous quantification of serotonin, dopamine and noradrenaline levels in single frontal cortex dialysates of freely-moving rats reveals a complex pattern of reciprocal auto-and heteroceptor-mediated control of release. Neurosci 84: 413–429CrossRefGoogle Scholar
  63. 63.
    De Haes JI, Bosker FJ, Van Waarde A, Pruim J, Willemsen AT, Vaalburg W, Den Boer JA (2002) 5-HT1A receptor imaging in the human brain: Effect of tryptophan depletion and infusion on [18F]MPPF binding. Synapse 46: 108–115CrossRefGoogle Scholar
  64. 64.
    Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin 1A, 1C and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351: 357–373PubMedCrossRefGoogle Scholar
  65. 65.
    Kalsbeek A (1989) The role of dopamine in the development of the rat prefrontal cortex. Krips Repro Meppel, Amsterdam (Acad. proefschrift)Google Scholar
  66. 66.
    Meng SZ, Ozawa Y, Itoh M, Takashima S (1999) Development and age-related changes of dopamine transporter, and dopamine D1 and D2 receptors in human basal ganglia. Brain Res 843: 136–144PubMedCrossRefGoogle Scholar
  67. 67.
    Seeman P, Bzowej NH, Guan HC, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riederer P, Jellinger K, Watanabe S, Tourtellotte WW (1987) Human brain dopamine receptors in children and aging adults. Synapse 1: 399–404PubMedCrossRefGoogle Scholar
  68. 68.
    Andersen SL, Teicher MH (2000) Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev 24: 137–141PubMedCrossRefGoogle Scholar
  69. 69.
    Rodriguez M, Martin L, Santana C (1994) Ontogenic development of brain asymmetry in dopaminergic neurons. Brain Res Bull 33: 163–171PubMedCrossRefGoogle Scholar
  70. 70.
    Lambe EK, Krimer LS, Goldman-Rakic PS (2000) Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of Rhesus monkey. J Neurosci 20: 8780–8787PubMedGoogle Scholar
  71. 71.
    Oades RD, Röpcke B, Schepker R (1996) A test of conditioned blocking and its development in childhood and adolescence: relationship to personality and monoamines metabolism. Dev Neuropsychol 12: 207–230CrossRefGoogle Scholar
  72. 72.
    Verney C, Milosevic A, Alvarez C, Berger B (1993) Immunocytochemical evidence of well-developed dopaminergic and noradrenergic innervations in the frontal cerebral cortex of human fetuses at midgestation. J Comp Neurol 336: 331–344PubMedCrossRefGoogle Scholar
  73. 73.
    Zecevic N, Verney C (1995) Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex. J Comp Neurol 351: 509–535PubMedCrossRefGoogle Scholar
  74. 74.
    Tomasini R, Kema IP, Muskiet FAJ, Meiborg G, Staal MJ, Go KG (1997) Catecholaminergic development of fetal ventral mesencephalon: characterization by high-performance liquid chromatography with electrochemical detection and immunohistochemistry. Exp Neurol 145: 434–441PubMedCrossRefGoogle Scholar
  75. 75.
    Konradi C, Kornhuber J, Sofic E, Heckers S, Riederer P, Beckmann H (1992)Variations of monoamines and their metabolites in the human brain putamen. Brain Res 579: 285–290PubMedCrossRefGoogle Scholar
  76. 76.
    Neddens J, Dawirs RR, Bagorda F, Busche A, Horstmann S, Teuchert-Noodt G (2004) Postnatal maturation of cortical serotonin lateral asymmetry in gerbils is vulnerable to both environmental and pharmacological epigenetic challenges. Brain Res 1021: 200–208PubMedCrossRefGoogle Scholar
  77. 77.
    Arnsten AFT (2006) Noradrenergic actions in prefrontal cortex: Relevance to ADHD. In: Oades RD (ed) Attention-deficit/hyperactivity disorder and the hyperkinetic syndrome: current ideas and ways forward. Hauppauge, NewYork: Nova Science Publishers Inc., 109–129Google Scholar
  78. 78.
    Beane M, Marrocco RT (2005) Norepinephrine and acetylcholine mediation of the components of reflexive attention: implications for attention deficit disorders. Prog Neurobiol 74: 167–181CrossRefGoogle Scholar
  79. 79.
    Oades RD (1985) The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neurosci Biobehav Rev 9: 261–283PubMedCrossRefGoogle Scholar
  80. 80.
    Rajkowski J, Majczynski H, Clayton E, Aston-Jones GS (2004) Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. J Neurophysiol 92: 361–371PubMedCrossRefGoogle Scholar
  81. 81.
    Carli M, Samanin R (2000) The 5-HT1A receptor agonist 8-OH-DPAT reduces rats’ accuracy of attentional performance and enhances impulsive responding in a five-choice serial reaction time task: role of presynaptic 5-HT1A receptors. Psychopharmacol 149: 259–268CrossRefGoogle Scholar
  82. 82.
    Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW (2002) Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacol 26: 716–728CrossRefGoogle Scholar
  83. 83.
    Kavoussi R, Armstead P, Coccaro EF (1997) The neurobiology of impulsive aggression. Psychiat Clin N Am 20: 395–403CrossRefGoogle Scholar
  84. 84.
    Winter JC, Eckler JR, Doat MM, Rabin RA (2002) The effects of acute and subchronic treatment with fluoxetine and citalopram on stimulus control by DOM. Pharmacol Biochem Behav 74: 95–101PubMedCrossRefGoogle Scholar
  85. 85.
    Aglioti S, Smania N, Barbieri C, Corbetta M (1997) Influence of stimulus salience and attentional demands on visual search patterns in hemispatial neglect. Brain Cogn 34: 388–403PubMedCrossRefGoogle Scholar
  86. 86.
    Malapani C, Pillon B, Dubois B, Agid Y (1994) Impaired simultaneous cognitive task performance in Parkinson’s disease: a dopamine-related dysfunction. Neurol 44: 319–326Google Scholar
  87. 87.
    Oades RD (1997) Stimulus dimension shifts in patients with schizophrenia, with and without paranoid hallucinatory symptoms, or obsessive compulsive disorder: strategies, blocking and monoamine status. Behav Brain Res 88: 115–132PubMedCrossRefGoogle Scholar
  88. 88.
    McCormick DA, Pape HC, Williamson A (1991) Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Prog Brain Res 88: 293–305PubMedCrossRefGoogle Scholar
  89. 89.
    Devoto P, Flore G, Pira L, Longu G, Gessa GL (2004) Mirtazapine-induced corelease of dopamine and noradrenaline from noradrenergic neurons in the medial prefrontal and occipital cortex. Eur J Pharmacol 487: 105–111PubMedCrossRefGoogle Scholar
  90. 90.
    Lanau F, Zenner MT, Civelli O, Hartman DS (1997) Epinephrine and norepinephrine act as potent agonists at the recombinant human dopamine D4 receptor. J Neurochem 68: 804–812PubMedCrossRefGoogle Scholar
  91. 91.
    Auclair A, Cotecchia S, Glowinski J, Tassin J-P (2002) D-amphetamine fails to increase extracellular dopamine levels in mice lacking alpha 1b-adrenergic receptors: relationship between functional and nonfunctional dopamine release. J Neurosci 22: 9150–9154PubMedGoogle Scholar
  92. 92.
    Sonuga-Barke EJS (2005) Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiat 57: 1231–1238PubMedCrossRefGoogle Scholar
  93. 93.
    Sergeant JA, Oosterlaan J, van der Meere JJ (1999) Information processing in attentiondeficit/hyperactivity disorder. In: Quay HC, Hogan AE (eds): Handbook of disruptive behavior disorders. Plenum Press, NewYork, 75–104Google Scholar
  94. 94.
    Barkley RA (1997) Behavioral inhibition, sustained attention and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121: 65–94PubMedCrossRefGoogle Scholar
  95. 95.
    Quay HC (1997) Inhibition and attention deficit hyperactivity disorder. J Abnorm Child Psychol 25: 7–13PubMedCrossRefGoogle Scholar
  96. 96.
    Sagvolden T, Johansen EB, Aase H, Russell VA (2005) A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/ impulsive and combined subtypes. Behav Brain Sci 28: 397–468PubMedCrossRefGoogle Scholar
  97. 97.
    Luman M, Oosterlaan J, Sergeant JA (2005) The impact of reinforcement contingencies on AD/HD: A review and theoretical appraisal. Clin Psychol Rev 25: 183–213PubMedCrossRefGoogle Scholar
  98. 98.
    Casey BJ, Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Schubert AB, Vauss YC, Vaituzis AC, Dickstein DP, Sarfatti SE, Rapoport JL (1997) Implication of right frontostriatal circuitry in response inhibition and attention-deficit / hyperactivity disorder. J Am Acad Child Adolesc Psychiat 36: 374–383CrossRefGoogle Scholar
  99. 99.
    Rubia K, Overmeyer S, Taylor EA, Brammer MJ, Williams SCR, Simmons A, Bullmore ET (1999) Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiat 156: 891–896PubMedGoogle Scholar
  100. 100.
    Smith AB, Taylor EA, Brammer M, Rubia K (2004) Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Hum Brain Mapp 21: 247–56PubMedCrossRefGoogle Scholar
  101. 101.
    Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E (2005) Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiat 162: 1067–1075PubMedCrossRefGoogle Scholar
  102. 102.
    Vaidya CJ, Bunge SA, Dudukovic NM, Zalecki CA, Elliiott GR, Gabrieli DE (2005) Altered neural substrates of cognitive control in childhood ADHD: Evidence from functional magnetic resonance imaging. Am J Psychiat 162: 1605–1613PubMedCrossRefGoogle Scholar
  103. 103.
    Bunge SA, Dudokovic NM, Thomason MA, Vaidya CJ, Gabrieli JDE (2002) Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron 17: 301–311CrossRefGoogle Scholar
  104. 104.
    Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neurosci 6: 115–116PubMedCrossRefGoogle Scholar
  105. 105.
    Bush G, Frazier JA, Seidman LJ, Whalen PJ, Jenike MA, Rosen BR, Biederman J (1999) Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol Psychiat 45: 1542–1552PubMedCrossRefGoogle Scholar
  106. 106.
    Durston S (2003) A review of the biological bases of ADHD: what have we learned from imaging studies? Ment Retard Dev Disabil Res Rev 9: 184–195PubMedCrossRefGoogle Scholar
  107. 107.
    Durston S, Hulshoff Pol HE, Schnack HG, Buitelaar J, Steenhuis MP, Minderaa RB, Kahn RS, van Engeland H (2004) Magnetic resonance imaging of boys with attention-deficit/ hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psychiat 43: 332–340CrossRefGoogle Scholar
  108. 108.
    Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, Sarfatti SE, Vauss YC, Snell JW, Lange N et al. (1996) Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiat 53: 607–616PubMedGoogle Scholar
  109. 109.
    Aron AR, Monsell S, Sahakian BJ, Robbins TW (2004) A componential analysis of task-switching deficits associated with lesions of left and right frontal cortex. Brain 127: 1561–1573PubMedCrossRefGoogle Scholar
  110. 110.
    Aron AR, Dowson JH, Sahakian BJ, Robbins TW (2003) Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiat 54: 1465–1468PubMedCrossRefGoogle Scholar
  111. 111.
    Cepeda NJ, Cepeda ML, Kramer AF (2000) Task switching and attention deficit hyperactivity disorder. J Abnorm Child Psychol 28: 213–226PubMedCrossRefGoogle Scholar
  112. 112.
    Kramer AF, Cepeda NJ, Cepeda ML (2001) Methylphenidate effects on task switching performance in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiat 40: 1277–1284CrossRefGoogle Scholar
  113. 113.
    Schweitzer JB, Faber TL, Grafton ST, Tune LE, Hoffman JM, Kilts CD (2000) Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. Am J Psychiat 157: 278–280PubMedCrossRefGoogle Scholar
  114. 114.
    Ernst M, Kimes AS, London ED, Matochik JA, Eldreth D, Tata S, Contoreggi C, Leff M, Bolla K (2003) Neural substrates of decision making in adults with attention deficit hyperactivity disorder. Am J Psychiat 160: 1061–1070PubMedCrossRefGoogle Scholar
  115. 115.
    Schweitzer JB, Lee DO, Hanford RB, Zink CF, Ely TD, Tagamets MA, Hoffman JM, Grafton ST, Kilts CD (2004) Effect of methylphenidate on executive functioning in adults with attention-deficit/hyperactivity disorder: Normalization of behavior but not related brain activity. Biol Psychiat 56: 597–606PubMedCrossRefGoogle Scholar
  116. 116.
    Volkow ND, Fowler JS, Wang GJ, Ding YS, Gatley SJ (2002) Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur Neuropsychopharmacol 12: 557–566PubMedCrossRefGoogle Scholar
  117. 117.
    Volkow ND, Wang G-J, Fowler JS, Telang F, Maynard L, Logan J, Gatley SJ, Pappas N, Wong C, Vaska P, Zhu W, Swanson JM (2004) Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain. Am J Psychiat 161: 1173–1180PubMedCrossRefGoogle Scholar
  118. 118.
    Volkow ND, Wang G-J, Ma Y, Fowler JS, Wong C, Ding Y-S, Hitzemann RJ, Swanson JM, Kalivas PW (2005) Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J Neurosci 25: 3932–3939PubMedCrossRefGoogle Scholar
  119. 119.
    Volkow ND, Wang G-Y, Fowler JS, Hitzemann RJ, Gatley J, Ding Y-S, Wong C, Pappas N (1998) Differences in regional brain metabolic responses between single and repeated doses of methylphenidate. Psychiat Res (Neuroimaging) 83: 29–36CrossRefGoogle Scholar
  120. 120.
    Volkow ND, Logan J, Fowler JS, Wang G-J, Gur RC, Wong C, Felder C, Gatley J, Ding Y-S, Hitzemann RJ, Pappas N (2000) Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiat 157: 75–80PubMedGoogle Scholar
  121. 121.
    Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM (1998) DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18] fluorodopa positron emission tomography study. J Neurosci 18: 5901–5907PubMedGoogle Scholar
  122. 122.
    Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Jons PH, Cohen RM (1999) High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am J Psychiat 156: 1209–1215PubMedGoogle Scholar
  123. 123.
    Bellgrove MA, Domschke K, Hawi Z, Kirley A, Mullins C, Robertson IH, Gill M (2005) The methionine allele of the COMT polymorphism impairs prefrontal cognition in children and adolescents with ADHD. Exp Brain Res 163: 352–360PubMedCrossRefGoogle Scholar
  124. 124.
    Mullins C, Bellgrove MA, Gill M, Robertson IH (2005) Variability in time reproduction: difference in ADHD combined and inattentive subtypes. J Am Acad Child Adolesc Psychiat 44: 169–176CrossRefGoogle Scholar
  125. 125.
    Sunohara GA, Roberts W, Malone MA, Schachar RJ, Tannock R, Basile VS, Wigal T, Wigal SB, Schuck S, Moriarty J et al. (2000) Linkage of the dopamine D4 receptor gene and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiat 39: 1537–1542CrossRefGoogle Scholar
  126. 126.
    Leung PWL, Lee CC, Hung SF, Ho TP, Tang CP, Kwong SL, Leung SY, Yuen ST, Lieh-Mak F, Oosterlaan J et al. (2005) Dopamine receptor D4 (DRD4) gene in Han chinese children with attention-deficit/hyperactivity disorder (ADHD): increased prevalence of the 2-repeat allele. Am J Med Genet 133B: 54–56CrossRefPubMedGoogle Scholar
  127. 127.
    Swanson JM, Oosterlaan J, Murias M, Schuck S, Spence AA, Wasdell M, Ding Y, Chi H-C, Smith M, Mann M et al. (2001) Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on criticl neuropsychological tests of attention. Proc Natl Acad Sci (USA) 97: 4754–4759CrossRefGoogle Scholar
  128. 128.
    Durston S, Fossella JA, Casey BJ, Hulshoff Pol HE, Galvan A, Schnack HG, Steenhuis MP, Minderaa RB, Buitelaar JK, Kahn RS, van Engeland H (2005) Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Mol Psychiat 10: 678–685CrossRefGoogle Scholar
  129. 129.
    Durston S, Fossella JA, Casey BJ (2006) Neuroimaging as an approach to the Neurobiology of ADHD. In: Oades RD (ed) Attention-deficit/hyperactivity disorder and the hyperkinetic syndrome: current ideas and ways forward. Hauppauge, NewYork: Nova Science Publishers Inc., 173–184Google Scholar
  130. 130.
    Burnette WB, Bailey MD, Kukoyi S, Blakely RD, Trowbridge CG, Justice JB (1996) Human norepinephrine transporter kinetics using rotating disk electrode voltammetry. Anal Chem 68: 2932–2938PubMedCrossRefGoogle Scholar
  131. 131.
    Devoto P, Flore, Pani L, Gessa GL (2001) Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex. Mol Psychiat 6: 657–664CrossRefGoogle Scholar
  132. 132.
    Biederman J, Spencer T (1999) Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiat 46: 1234–1242PubMedCrossRefGoogle Scholar
  133. 133.
    Madras BK, Miller GM, Fischman AJ (2005) The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiat 57: 1397–1409PubMedCrossRefGoogle Scholar
  134. 134.
    Bobb AJ, Addington AM, Sidransky E, Gornick MC, Lerch JP, Greenstein DK, Clasen LS, Sharp WS, Inoff-Germain G, Wavrant-De Vrie’ze F et al. (2005) Support for Association BetweenADHD and Two Candidate Genes: NET1 and DRD1. Am J Med Genet 134B: 67–72CrossRefPubMedGoogle Scholar
  135. 135.
    Yang L, Wang Y-F, Li JMS, Faraone SV (2004) Association of norepinephrine transporter gene with methylphenidate response. J Am Acad Child Adolesc Psychiat 43: 1154–1158CrossRefGoogle Scholar
  136. 136.
    Xu X, Knight J, Brookes K, Mill J, Sham P, Craig I, Taylor E, Asherson P (2005) DNA pooling analysis of 21 norepinephrine transporter gene SNPs with attention deficit hyperactivity disorder: no evidence for association. Am J Med Genet 134B: 115–118CrossRefPubMedGoogle Scholar
  137. 137.
    De Luca V, Muglia P, Jani U, Kennedy JL (2004) No evidence of linkage or association between the norepinephrine transporter (NET) gene MnlI polymorphism and adult ADHD. Am J Med Genet 124B: 38–40CrossRefPubMedGoogle Scholar
  138. 138.
    Barr CL, Kroft J, Feng Y, Wigg K, Roberts W, Malone M, Ickowicz A, Schachar RJ, Tannock R, Kennedy JL (2002) The norepinephrine transporter gene and attention-deficit hyperactivity disorder. Am J Med Genet 114: 255–259PubMedCrossRefGoogle Scholar
  139. 139.
    Michelson D, Adler L, Spencer T, Reimherr FW, West SA, Allen AJ, Kelsey D, Wernicke J, Dietrich A, Milton DR (2003) Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biol Psychiat 53: 211–220CrossRefGoogle Scholar
  140. 140.
    Roman T, Schmitz M, Polanczyk GV, Eizirik M, Rohde LA, Hutz MH (2003) Is the α-2a adrenergic receptor gene (ADRRA2A) associated with attention-deficit/hyperactivity disorder? Am J Med Genet 120B: 116–120CrossRefPubMedGoogle Scholar
  141. 141.
    Hawi Z, Lowe N, Kirley A, Nöthen M, Greenwood T, Kelsoe J, Fitzgerald M, Gill M (2003) Linkage disequilibrium mapping at DAT1, DRD5 and DBH narrows the search for ADHD susceptibility alleles at these loci. Mol Psychiat 8: 299–308CrossRefGoogle Scholar
  142. 142.
    Park L, Nigg JT, Waldman ID, Nummy KA, Huang-Pollock C, Rappley M, Friderici KH (2005) Associations and linkage of α-2A adrenergic receptor gene polymorphisms with childhood ADHD. Mol Psychiat 10: 572–580CrossRefGoogle Scholar
  143. 143.
    Wang M, Tang ZX, Li BM (2004) Enhanced visuomotor associative learning following stimulation of alpha 2A-adrenoceptors in the ventral prefrontal cortex in monkeys. Brain Res 1024: 176–182PubMedCrossRefGoogle Scholar
  144. 144.
    Wang M, Ji JZ, Li BM (2004) The alpha(2A)-adrenergic agonist guanfacine improves visuomotor associative learning in monkeys. Neuropsychopharmacol 29: 86–92CrossRefGoogle Scholar
  145. 145.
    Ma CL, Qi XL, Peng JY, Li BM (2003) Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha 2-adrenoceptors in monkeys. Neuro Report 14:1013–1016Google Scholar
  146. 146.
    Ma C-L, Arnsten AFT, Li B-M (2005) Locomotor hyperactivity induced by blockade of prefrontal cortical a2-adrenoceptors in monkeys. Biol Psychiat 57: 192–195PubMedCrossRefGoogle Scholar
  147. 147.
    Clarke AR, Barry RJ, McCarthy R, Selikowitz M (2006) EEG predictors of good response to imipramine hydrochloride in children with attention deficit/hyperactivity disorder. In: Oades RD (ed): Attention-deficit/hyperactivity disorder and the hyperkinetic syndrome: current ideas and ways forward. Hauppauge, NewYork: Nova Science Publishers, Inc., 249–267Google Scholar
  148. 148.
    Hermens DF, Williams LM, Clarke S, Kohn M, Cooper N, Gordon E (2005) Responses to methylphenidate in adolescent AD/HD: Evidence from concurrently recorded autonomic (EDA) and central (EEG and ERP) measures. Int J Psychophysiol 58: 21–33PubMedCrossRefGoogle Scholar
  149. 149.
    Sangal RB, Sangal JM (2005) Attention-deficit/hyperactivity disorder: cognitive evoked potential (P300) amplitude predicts treatment response to atomoxetine. Clin Neurophysiol 116: 640–647PubMedCrossRefGoogle Scholar
  150. 150.
    Klorman R, Brumaghim JT (1991) Stimulant drugs and ERPs. EEG Clin Neurophysiol Suppl 42: 135–141Google Scholar
  151. 151.
    Seifert J, Scheuerpflug P, Zillessen K-E, Fallgatter AJ, Warnke A (2003) Electrophysiological investigation of the effectiveness of methylphenidate in children with and without ADHD. J Neur Trans 110: 821–829Google Scholar
  152. 152.
    Lazzaro I, Anderson J, Gordon E, Clarke S, Leong J, Meares R (1997) Single trial varaibility within the P300 (250–500 ms) processing window in adolescents with attention defict hyperactivity disorder. Psychiat Res 73: 91–101CrossRefGoogle Scholar
  153. 153.
    Jonkman LM, Kemner C, Verbaten MN, Koelega HS, Camfferman G, van der Gaag R-J, Buitelaar JK, van Engeland H (1997) Effects of methylphenidate on event-related potentials and performance of attention-deficit hyperactivity disorder children in auditory and visual selective attention tasks. Biol Psychiat 41: 690–702PubMedCrossRefGoogle Scholar
  154. 154.
    Jonkman LM, Kemner C, Verbaten MN, van Engeland H, Camfferman G, Buitelaar JK, Koelega HS (2000) Attentional capacity, a probe ERP study: differences between children with attention-deficit hyperactivity disorder and normal control children and effects of methylphenidate. Psychophysiol 37: 334–346CrossRefGoogle Scholar
  155. 155.
    Prichep LS, Sutton S, Hakerem G (1976) Evoked potentials in hyperkinetic and normal children under certainty and uncertainty: a placebo and methylphenidate study. Psychophysiol 13: 419–428Google Scholar
  156. 156.
    Broyd SJ, Johnstone SJ, Barry RJ, Clarke AR, McCarthy R, Selikowitz M, Lawrence CA (2005) The effect of methylphenidate on response inhibition and the event-related potential of children with attention deficit/ hyperactivity disorder. Int J Psychophysiol 58: 47–58PubMedCrossRefGoogle Scholar
  157. 157.
    Gehlert DR, Schober DA, Hemrick-Luecke SK, Kushinski J, Howbert JJ, Robertson DW, Fuller RW, Wong DT (1995) Novel halogenated analogs of tomoxetine that are potent and selective inhibitors of norepinephrine uptake in brain. Neurochem Int 26:47–52PubMedCrossRefGoogle Scholar
  158. 158.
    Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neurosci 111: 163–176CrossRefGoogle Scholar
  159. 159.
    Di Giovanni G, Di Matteo V, Di Mascio M, Esposito E (2000) Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin2c/2b receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 35: 53–61PubMedCrossRefGoogle Scholar
  160. 160.
    Di Matteo V, Cacchio M, Di Giulio C, Esposito E (2002) Role of serotonin (2C) receptors in the control of brain dopaminergic function. Pharmacol Biochem Behav 71: 727–734PubMedCrossRefGoogle Scholar
  161. 161.
    Hutson PH, Barton CL, Jay M, Blurton P, Burkamp F, Clarkson R, Bristow LJ (2000) Activation of mesolimbic dopamine function by phencyclidine is enhanced by 5-HT2C/2B receptor antagonists: neurochemical and behavioural studies. Neuropharmacol 39: 2318–2328CrossRefGoogle Scholar
  162. 162.
    Castellanos FX, Elia J, Kruesi MJP, Marsh WL, Gulotta CS, Potter WZ, Ritchie GF, Hamburger SD, Rapoport JL (1996) Cerebrospinal fluid homovanillic acid predicts behavioral response to stimulants in 45 boys with attention deficit/hyperactivity disorder. Neuropsychopharmacol 14: 125–137CrossRefGoogle Scholar
  163. 163.
    Rogers RD, Blackshaw AJ, Middleton HC, Matthews K, Hawtin K, Crowley C, Hopwood A, Wallace C, Deakin JFW, Sahakian BJ, Robbins TW (1999) Tryptophan depletion impairs stimulus reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacol 146: 482–491CrossRefGoogle Scholar
  164. 164.
    Oades RD, Müller BW (1997) The development of conditioned blocking and monoamine metabolism in children with attention-deficit-hyperactivity disorder or complex tics and healthy controls: an exploratory analysis. Behav Brain Res 88: 95–102PubMedCrossRefGoogle Scholar
  165. 165.
    Oades RD (2002) Dopamine may be ‘hyper’ with respect to noradrenaline metabolism, but “hypo” with respect to serotonin metabolism in children with ADHD. Behav Brain Res 130: 97–101PubMedCrossRefGoogle Scholar
  166. 166.
    Rubia K, Lee F, Cleare AJ, Tunstall N, Fu CHY, Brammer M, McGuire PK (2004) Tryptophan depletion reduces right inferior prefrontal activation during no-go trials in fast, event-related fMRI. Psychopharmacol 179: 791–803Google Scholar
  167. 167.
    Castellanos FX, Elia J, Kruesi MJP, Gulotta CS, Mefford IN, Potter WZ, Ritchie GF, Rapoport JL (1994) Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiat Res 52: 305–316CrossRefGoogle Scholar
  168. 168.
    Hegerl U (1998) Event-related potentials and clinical response to serotonin agonists in patients with affective disorders. Eur Arch Psychiat clin Neurosci 248(Suppl. 2): S75Google Scholar
  169. 169.
    Nathan PD, O’Neill B, Croft RJ (2005) Is the loudness dependence of the auditory evoked potential a sensitive and selective in vivo marker of central serotonergic function? Neuropsychopharmacol 30: 1584–1585CrossRefGoogle Scholar
  170. 170.
    Gallinat J, Stroehle A, Lang UE, Bajbouj M, Kalus P, Montag C, Seifert F, Wernicke C, Rommelspacher H, Rinneberg H, Schubert F (2005) Association of human hippocampal neurochemistry, serotonin transporter genetic variation, and anxiety. Neuroimage 26:123–131PubMedCrossRefGoogle Scholar
  171. 171.
    Carrilo-de-la-Pena MT (2001) One year test-retest reliability of auditory evoked potentials (AEEPs) to tones of increasing intensity. Psychophysiol 38: 417–424CrossRefGoogle Scholar
  172. 172.
    Dykman RA, Holcomb PJ, Ackerman PT, McCray DS (1983) Auditory ERP augmentation-reduction and methylphenidate dosage needs in attention and reading disordered children. Psychiat Res 9: 255–269CrossRefGoogle Scholar
  173. 173.
    Bruneau N, Barthelemy C, Roux S, Jouve J, Lelord G (1989) Auditory evoked potential modifications according to clinical and biochemical responsiveness to fenfluramine treatment in children with autistic behavior. Neuropsychobiol 21: 48–52Google Scholar
  174. 174.
    Jemel B, Achenbach C, Müller B, Röpcke B, Oades RD (2002) Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes. Brain Topogr 15: 13–27PubMedCrossRefGoogle Scholar
  175. 175.
    Fallgatter AJ, Herrmann MJ, Roemmler J, Ehlis A-C, Wagener A, Heidrich A, Ortega G, Zeng Y, Lesch KP (2005) Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacol 29: 1506–1511CrossRefGoogle Scholar
  176. 176.
    Curran S, Purcell S, Craig I, Asherson P, Sham P (2005) The serotonin transporter gene as a QTL for ADHD. Am J Med Genet 134B: 42–47CrossRefPubMedGoogle Scholar
  177. 177.
    Lakatos K, Nemoda Z, Birkas E, Ronai Z, Kovacs E, Ney K, Toth I, Sasvari-Szekely M, Gervai J (2003) Association of D4 dopamine receptor gene and serotonin transporter promoter polymorphisms with infants’ response to novelty. Mol Psychiat 8: 90–97CrossRefGoogle Scholar
  178. 178.
    Seeger G, Schloss P, Schmidt MH (2001) Marker gene polymorphisms in hyperkinetic disorder — predictors of clinical response to treatment with methylphenidate? Neurosci Lett 313: 45–48PubMedCrossRefGoogle Scholar
  179. 179.
    Uzbekov MG (2006) Hyperkinetic syndrome as a manifestation of a disturbance of metabolism and mental development. In: Oades RD (ed): Attention-deficit/hyperactivity disorder and the hyperkinetic syndrome: current ideas and ways forward. Hauppauge, NewYork: Nova Science Publishers, Inc., 133–154Google Scholar
  180. 180.
    David SP, Murthy NV, Rabiner EA, Munafo MR, Johnstone EC, Jacob R, Walton RT, Grasby PM (2005) A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. J Neurosci 25: 2586–2590PubMedCrossRefGoogle Scholar
  181. 181.
    Bantick RA, de Vries MH, Grasb PM (2005) The effect of a 5-HT1A receptor agonist on striatal dopamine release. Synapse 57: 67–75PubMedCrossRefGoogle Scholar
  182. 182.
    Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21: 9856–9866PubMedGoogle Scholar
  183. 183.
    Ferre S, Artigas F (1993) Dopamine D2 receptor-mediated regulation of serotonin extracellular concentration in the dorsal raphe nucleus of freely moving rats. J Neurochem 61: 772–775PubMedCrossRefGoogle Scholar
  184. 184.
    Reneman L, De Bruin K, Lavalaye J, Guning WB, Booij J (2001) Addition of a 5-HT receptor agonist to methylphenidate potentiates the reduction of [123I]FP-CIT binding to dopamine transporter in rat frontal cortex and hippocampus. Synapse 39: 193–200PubMedCrossRefGoogle Scholar
  185. 185.
    Fleckenstein AE, Hanson GR (2003) Impact of psychostimulants on vesicular monoamine transporter function. Eur J Pharmacol 479: 283–289PubMedCrossRefGoogle Scholar
  186. 186.
    Truong JG, Newman AH, Hanson GR, Fleckenstein AE (2004) Dopamine D2 receptor activation increases vesicular dopamine uptake and redistributes vesicular monoamine transporter-2 protein. Eur J Pharmacol 504: 27–32PubMedCrossRefGoogle Scholar
  187. 187.
    Oades RD, Sadile AG, Sagvolden T, Viggiano D, Zuddas A, Devoto P, Aase H, Johansen EB, Ruocco LA, Russell VA (2005) The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic, and interactive roles. Dev Sci 8: 122–131PubMedCrossRefGoogle Scholar
  188. 188.
    Sonuga-Barke EJS, Williams E, Hall M, Saxton T (1996) Hyperactivity and delay aversion. III: The effect on cognitive style of imposing delay after errors. J Child Psychol Psychiat 37: 189–194PubMedGoogle Scholar
  189. 189.
    Neef NA, Bicard DF, Endo S (2001) Assessment of impulsivity and the development of self-control in students with attention deficit hyperactivity disorder. J Appl Behav Anal 34: 397–408PubMedCrossRefGoogle Scholar
  190. 190.
    Kuntsi J, Oosterlaan J, Stevenson J (2001) Psychological mechanisms in hyperactivity; I Response inhibition deficit, working memory impairment, delay aversion, or something else? J Child Psychol Psychiat 42: 199–210PubMedCrossRefGoogle Scholar
  191. 191.
    Tripp G, Alsop B (2001) Sensitivity to reward delay in children with attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiat 42: 691–698PubMedCrossRefGoogle Scholar
  192. 192.
    Winstanley CA, Theobald DEH, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24: 4718–4722PubMedCrossRefGoogle Scholar
  193. 193.
    Solanto MV, Abikoff H, Sonuga-Barke EJS, Schachar RJ, Logan GD, Wigal T, Hechtman L, Hinshaw S, Turkel E (2001) The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: a supplement to the NIMH multimodal treatment study of AD/HD. J Abnorm Child Psychol 29: 215–228PubMedCrossRefGoogle Scholar
  194. 194.
    Schultz W (2002) Getting formal with dopamine and reward. Neuron 36: 241–263PubMedCrossRefGoogle Scholar
  195. 195.
    Oades RD (1999) Dopamine: Go/No-Go motivation vs. switching. Commentary on Depue & Collins “Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation and extraversion.” Behav Brain Sci 22: 532–53CrossRefGoogle Scholar
  196. 196.
    Harris GC, Wimmer M, Aston-Jones GS (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437: 556–559PubMedCrossRefGoogle Scholar
  197. 197.
    Federici M, Geracitano R, Bernardi G, Mercuri NB (2005) Actions of methylphenidate on dopaminergic neurons of the ventral midbrain. Biol Psychiat 57: 361–365PubMedCrossRefGoogle Scholar
  198. 198.
    Grace AA (2001) Psychostimulant actions on dopamine and limbic system function: relevance to the pathophysiology and treatment of ADHD. In: Solanto MV, Arnsten AFT, Castellanos FX (eds) Stimulant drugs and ADHD: basic and clinical neuroscience. Oxford University Press. Oxford, 134–157Google Scholar
  199. 199.
    Krause K-H, Dresel SH, Krause J, Kung HF, Tatsch K (2000) Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 285: 107–110PubMedCrossRefGoogle Scholar
  200. 200.
    Volkow ND, Wang G-J, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y-S, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21:RC121 (1–5)PubMedGoogle Scholar
  201. 201.
    Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D, Molina PE, Dewey SL (2000) Comparison between intraperitoneal and oral methylphenidate administration: a microdialysis and locomotor study. J Pharmacol Exp Ther 295: 51–57PubMedGoogle Scholar
  202. 202.
    Volkow ND, Wang G-J, Fowler JS, Ding Y-S (2005) Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attentiondeficit/ hyperactivity disorder. Biol Psychiat 57: 1410–1415PubMedCrossRefGoogle Scholar
  203. 203.
    Winsberg BG, Comings DE (1999) Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiat 38: 1474–1477CrossRefGoogle Scholar
  204. 204.
    Roman T, Szobot C, Martins S, Biederman J, Rohde LA, Hutz MH (2002) Dopamine transporter gene and response to methylphenidate in attention-deficit/hyperactivity disorder. Pharmacogenet 12: 497–499CrossRefGoogle Scholar
  205. 205.
    Rohde LA, Roman T, Szobot C, Cunha RD, Hutz MH, Biederman J (2003) Dopamine transporter gene, response to methylphenidate and cerebral blood flow in attentiondeficit/hyperactivity disorder: a pilot study. Synapse 48: 87–89PubMedCrossRefGoogle Scholar
  206. 206.
    Loo SK, Specter E, Smolen A, Hopfer C, Teale PD, Reite ML (2003) Functional effects of the DAT1 polymorphism on EEG measures in ADHD. J Am Acad Child Adolesc Psychiat 42: 986–993CrossRefGoogle Scholar
  207. 207.
    Cheon K-A, Ryu Y-H, Kim J-W, Cho D-Y (2004) The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur Neuropsychopharmacol 15: 95–101CrossRefGoogle Scholar
  208. 208.
    Bellgrove MA, Hawi Z, Kirley A, Futzgerald M, Gill M, Robertson IH (2005) Association between dopamine transporter (DAT1) genotype, left-sided inattention, and an enhanced response to methylphenidate in attention-deficit hyperactivity disorder. Neuropsychopharmacol 30: 2290–2297CrossRefGoogle Scholar
  209. 209.
    Wienbruch C, Paul I, Bauer S, Kivelitz H (2005) The influence of methylphenidate on the power spectrum of ADHD children — an MEG study. BMC Psychiatry 5: 29PubMedCrossRefGoogle Scholar
  210. 210.
    Cornish KM, Manly T, Savage R, Swanson J, Morisano D, Butler N, Grant C, Cross G, Bentley L, Hollis CP (2005) Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Mol Psychiat 10: 686–698CrossRefGoogle Scholar
  211. 211.
    Simseka M, Al-Sharbatib M, Al-Adawib S, Gangulyc SS, Lawatiaa K (2005)Association of the risk allele of dopamine transporter gene (DAT1*10) in Omani male children with attention-deficit hyperactivity disorder. Clin Biochem 38: 739–742CrossRefGoogle Scholar
  212. 212.
    Galvan A, Hare TA, Davidson M, Spicer J, Glover G, Casey BJ (2005) The role of ventral frontostriatal circuitry in reward-based Learning in humans. J Neurosci 25: 8650–8656PubMedCrossRefGoogle Scholar
  213. 213.
    Sagvolden T, Metzger MA, Schiorbeck HK, Rugland A-L, Spinnangr I, Sagvolden G (1992) The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neur Biol 58: 103–112CrossRefGoogle Scholar
  214. 214.
    Pietras CJ, Cherek DR, Lan SD, Tcheremissine OV, Steinberg JL (2004) Effects of methylphenidate on impulsive choice in adult humans. Psychopharmacol 170: 390–398Google Scholar
  215. 215.
    Volkow ND, Wang GJ, Fowler JS, Logan J, Jayne M, Franceschi D, Wong C, Gatley SJ, Gifford AN, Ding YS, Pappas N (2002) “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44: 175–18PubMedCrossRefGoogle Scholar
  216. 216.
    Bolanos CA, Barrot M, Berton O, Wallace-Black D, Nestler EJ (2003) Methylphenidate treatment during pre-and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol Psychiat 54: 1317–1329PubMedCrossRefGoogle Scholar
  217. 217.
    Mateo Y, Budygin EA, John CE, Jones SR (2004) Role of serotonin in cocaine effects in mice with reduced dopamine transporter function. Proc Natl Acad Sci (USA) 101: 372–377CrossRefGoogle Scholar
  218. 218.
    Budygin EA, Brodie MS, Sotnikova TD, Mateo Y, John CE, Cyr M, Gainetdinov RR, Jones SR (2004) Dissociation of rewarding and dopamine transporter-mediated properties of amphetamine. Proc Natl Acad Sci (USA) 101: 7781–7786CrossRefGoogle Scholar
  219. 219.
    Ahn K-C, Pazderka-Robinson H, Clements R, Ashcroft R, Ali T, Morse C, Greenshaw AJ (2005) Differential effects of intra-midbrain raphé and systemic 8-OH-DPAT on VTA self-stimulation thresholds in rats. Psychopharmacol 178: 381–388CrossRefGoogle Scholar
  220. 220.
    Dekeyne A, Gobert A, Auclair A, Girardon S, Millan MJ (2002) Differential modulation of efficiency in a food-rewarded “differential reinforcement of low-rate” 72-s schedule in rats by norepinephrine and serotonin reuptake inhibitors. Psychopharmacol 162: 156–16CrossRefGoogle Scholar
  221. 221.
    Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiat 44: 151–162PubMedCrossRefGoogle Scholar
  222. 222.
    Cherek DR, Lane SD, Pietras CJ, Steinberg JL (2002) Effects of chronic paroxetine administration on measures of aggressive and impulsive responses of adult males with a history of conduct disorder. Psychopharmacol 159: 266–274CrossRefGoogle Scholar
  223. 223.
    Sargent PA, Williamson DJ, Pearson G, Odontiadis J, Cowan PJ (1997) Effect of paroxetine and nefazodone on 5-HT1A receptor sensitivity. Psychopharmacol 132: 296–302CrossRefGoogle Scholar
  224. 224.
    Balleine B, Fletcher N, Dickinson A (1996) Effect of the 5HT1A agonist, 8-OH-DPAT, on instrumental performance in rats. Psychopharmacol 125: 79–88CrossRefGoogle Scholar
  225. 225.
    Fletcher PJ (1994) Effects of 8-OH-DPAT, 5-CT and muscimol on behaviour maintained by a DRL 20s schedule of reinforcment following microinjection into the dorsal or median raphe nuclei. Behav Pharmacol 5: 326–336PubMedGoogle Scholar
  226. 226.
    Fletcher PJ, Korth KM (1999) Activation of 5-HT1B in the nucleus accumbens reduces amphetamine induced enhancement of responding for conditioned reward. Psychopharmacol 142: 165–174CrossRefGoogle Scholar
  227. 227.
    Evenden JL (1999) The pharmacology of impulsive behaviour in rats. VII: the effects of serotonergic agonists and antagonists on responding under a discrimination task using unreliable visual stimuli. Psychopharmacol 146: 422–431CrossRefGoogle Scholar
  228. 228.
    Cousins MS, Vosmer G, Overstreet DH, Seiden LS (1999) Rats selectively bred for responsiveness to 5-hydroxytryptamine1A receptor stimulation: differences in differential reinforcement of low rate 72-second performance and response to serotonergic drugs. J Pharmacol Exp Ther 292: 104–113Google Scholar
  229. 229.
    Thiebot M-H, Martin P, Puech AJ (1992) Animal behavioural studies in the evaluation of antidepressant drugs. Br J Psychiat Suppl: 44–50Google Scholar
  230. 230.
    Bizot J-C, Le Bihan C, Puech AJ, Hamon M, Thiebot M-H (1999) Serotonin and tolerance to delay of reward in rats. Psychopharmacol 146: 400–412CrossRefGoogle Scholar
  231. 231.
    Denk F, Walton ME, Jennings KA, Sharp T, Rushworth MFS, Bannerman DM (2005) Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacol 179: 587–596CrossRefGoogle Scholar
  232. 232.
    Pliszka SR, Maas JW, Javors MA, Rogeness GA, Baker J (1994) Urinary catecholamines in attention-deficit hyperactivity disorder with and without comorbid anxiety. J Am Acad Child Adolesc Psychiat 33: 1165–1173Google Scholar
  233. 233.
    Raskin LA, Shaywitz SE, Shaywitz BA, Anderson GM, Cohen DJ (1984) Neurochemical correlates of attention deficit disorder. Pediatr Clin N Am 31: 387–396Google Scholar
  234. 234.
    Hunt RD, Cohen DJ, Anderson G, Clark L (1984) Possible change in noradrenergic receptor sensitivity following methylphenidate treatment: growth hormone and MHPG response to clonidine challenge in children with attention deficit disorder and hyperactivity. Life Sci 35: 885–897PubMedCrossRefGoogle Scholar
  235. 235.
    Shekim WO, Javaid J, Dekirmenjian H, Chapel JL, Davis JM (1982) Effects of damphetamine on urinary metabolites of dopamine and norepinephrine in hyperactive boys. Am J Psychiat 139: 485–488PubMedGoogle Scholar
  236. 236.
    Shekim WO, Javaid J, Davis JM, Bylund DB (1983) Urinary MHPG and HVA excretion in boys with attention deficit disorder and hyperactivity treated with d-amphetamine. Biol Psychiat 18: 707–713PubMedGoogle Scholar
  237. 237.
    Shen YC, Wang YF (1984) Urinary 3-methoxy-4-hydroxyphenylglycol sulfate excretion in seventy three schoolchildren with minimal brain dysfunction. Biol Psychiat 19: 861–869PubMedGoogle Scholar
  238. 238.
    Zametkin AJ, Karoum F, Linnoila M, Rapoport JL, Brown GL, Chuang LW, Wyatt RJ (1985) Stimulants, urinary catecholamines and indoleamines in hyperactivity: a comparison of methylphenidate and dextroamphetamine. Arch Gen Psychiat 42: 251–255PubMedGoogle Scholar
  239. 239.
    Jacobowitz D, Sroufe LA, Stewart M, Leffert N (1990) Treatment of attentional and hyperactivity problems in children with sympathomimetic drugs: a comprehensive review. J Am Acad Child Adolesc Psychiat 29: 677–688CrossRefGoogle Scholar
  240. 240.
    Castellanos FX (1999) The psychobiology of attention-deficit/hyperactivity disorder. In: Quay HC, Hogan TP (eds.) Handbook of disruptive behavior disorders. Kluwer Academic/Plenum Publishers, New York, 179–198Google Scholar
  241. 241.
    Halperin JM, Newcorn JH, Koda VH, Pick L, McKay KE, Knott P (1997) Noradrenergic mechanisms in ADHD children with and without reading disabilities: a replication and extension. J Am Acad Child Adolesc Psychiat 36: 1688–1697CrossRefGoogle Scholar
  242. 242.
    Kusaga A, Yamashita Y, Koeda T, Hiratani M, Kaneko M, Yamada S, Matsuishi T (2002) Increased urine phenylethylamine after methylphenidate treatment in children with ADHD. Ann Neurol 52: 371–374CrossRefGoogle Scholar
  243. 243.
    Potter WZ, Hsiao JK, Goldman SM (1989) Effects of renal clearance on plasma concentrations of homovanillic acid. Arch Gen Psychiat 46: 558–562PubMedGoogle Scholar
  244. 244.
    Shetty T, Chase TN (1976) Central monoamines and hyperkinesis of childhood. Neurol 26: 1000–1002Google Scholar
  245. 245.
    Irwin M, Belendiuk K, McCloskey K, Freedman DX (1981) Tryptophan metabolism in children with attentional deficit disorder. Am J Psychiat 138: 1082–1085PubMedGoogle Scholar
  246. 246.
    Spivak B, Vered Y, Yoran-Hegesh R, Graff E, Averbuch E, Vinokurow S, Weizman A, Mester R (2001) The influence of three months of methylphenidate treatment on plateletpoor plasma biogenic amine levels in boys with attention deficit hyperactivity disorder. Hum Psychopharmacol Clin Exp 16: 333–337CrossRefGoogle Scholar
  247. 247.
    Laufer MW, Denhoff E, Solomons G (1957) Hyperkinetic impulse disorder in children’s behaviour problems. Psychosom Med 19: 38–49PubMedGoogle Scholar
  248. 248.
    Ashtari M, Kumra S, Bhaskar SL, Clarke T, Thaden E, Cervellione KL, Rhinewine J, Kane JM, Adesman A, Milanaik R et al. (2005) Attention-deficit/hyperactivity disorder: A preliminary diffusion tensor imaging study. Biol Psychiat 57: 448–455PubMedCrossRefGoogle Scholar
  249. 249.
    Satterfield JH, Schell AM, Nicholas T (1994) Preferential processing of attended stimuli in attention-deficit hyperactivity disorder and normal boys. Psychophysiol 31: 1–10Google Scholar
  250. 250.
    Johnstone SJ (1999) Auditory event-related potentials in attention-deficit hyperactivity disorder: developmental and clinical aspects. University of Wollongong: PhD Thesis.Google Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2006

Authors and Affiliations

  • Robert D. Oades
    • 1
  1. 1.Biopsychology Research GroupUniversity Clinic for Child and Adolescent PsychiatryEssenGermany

Personalised recommendations