Nicotinic-antipsychotic drug interactions and cognitive function

  • Edward D. Levin
  • Amir H. Rezvani
Part of the Experientia Supplementum book series (EXS, volume 98)


Antipsychotic Drug Nicotinic Receptor Chronic Nicotine Sensory Gating Nicotinic Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levin ED, McClernon FJ, Rezvani AH (2006) Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification and anatomic localization. Psychopharmacology 184: 523–539PubMedCrossRefGoogle Scholar
  2. 2.
    Levin ED, Rezvani AH (2000) Development of nicotinic drug therapy for cognitive disorders. Eur J Pharmacol 393: 141–146PubMedCrossRefGoogle Scholar
  3. 3.
    Newhouse PA, Potter A, Levin ED (1997) Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases: Implications for therapeutics. Drugs Aging 11: 206–228PubMedGoogle Scholar
  4. 4.
    Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiat 49: 258–267PubMedCrossRefGoogle Scholar
  5. 5.
    Tollefson GD (1996) Cognitive function in schizophrenic patients. J Clin Psychiat 57Suppl 11: 31–39Google Scholar
  6. 6.
    Geyer MA, Tamminga CA (2004) Measurement and treatment research to improve cognition in schizophrenia: neuropharmacological aspects. Psychopharmacology 174: 1–2CrossRefGoogle Scholar
  7. 7.
    Martin LF, Kem WR, Freedman R (2004) Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology 174: 54–64PubMedCrossRefGoogle Scholar
  8. 8.
    McGehee DS, Heath MJS, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269: 1692–1696PubMedCrossRefGoogle Scholar
  9. 9.
    Wonnacott S, Irons J, Rapier C, Thorne B, Lunt GG (1989) Presynaptic modulation of transmitter release by nicotinic receptors. In: Nordberg A, Fuxe K, Holmstedt B, Sundwall A (eds): Progress in Brain Research. Elsevier Science Publishers B.V., 157–163Google Scholar
  10. 10.
    Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol 393: 51–58PubMedCrossRefGoogle Scholar
  11. 11.
    Bartus RT, Dean RL, Flicker C (1987) Cholinergic psychopharmacology: An integration of human and animal research on memory. In: Meltzer HY (ed): Psychopharmacology: the third generation of progress. Raven Press, New York, 219–232Google Scholar
  12. 12.
    Brioni JD, Decker MW, Sullivan JP, Arneric SP (1997) The pharmacology of (-)-nicotine and novel cholinergic channel modulators. Adv Pharmacol 37: 153–214PubMedCrossRefGoogle Scholar
  13. 13.
    Decker MW, Brioni JD, Bannon AW, Arneric SP (1995) Diversity of neuronal nicotinic acetylcholine receptors: Lessons from behavior and implications for CNS therapeutics — minireview. Life Sci 56: 545–570PubMedCrossRefGoogle Scholar
  14. 14.
    Warburton DM (1992) Nicotine as a cognitive enhancer. Prog Neuro-Psychopharmacol Biol Psychiatry 16: 181–919CrossRefGoogle Scholar
  15. 15.
    Levin ED (1992) Nicotinic systems and cognitive function. Psychopharmacology 108: 417–431PubMedCrossRefGoogle Scholar
  16. 16.
    Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138: 217–230PubMedCrossRefGoogle Scholar
  17. 17.
    Levin ED (1997) Chronic haloperidol administration does not block acute nicotine-induced improvements in radial-arm maze performance in the rat. Pharmacol Biochem Behav 58: 899–902PubMedCrossRefGoogle Scholar
  18. 18.
    Felix R, Levin ED (1997) Nicotinic antagonist administration into the ventral hippocampus and spatial working memory in rats. Neuroscience 81: 1009–1017PubMedCrossRefGoogle Scholar
  19. 19.
    Levin ED, Bettegowda C, Blosser J, Gordon J (1999) AR-R17779, and alpha7 nicotinic agonist, improves learning and memory in rats. Behav Neurosci 10: 675–680Google Scholar
  20. 20.
    Levin ED, Christopher N (2003) Lobeline-induced learning improvements in rats in the radial-arm maze. Pharmacol Biochem Behav 76, 133–139PubMedCrossRefGoogle Scholar
  21. 21.
    Levin ED, Christopher N (2002) Persistence of nicotinic agonist RJR 2403 induced working memory improvement in rats. Drug Dev Res 55: 97–103CrossRefGoogle Scholar
  22. 22.
    Grilly DM (2000) A verification of psychostimulant-induced improvement in sustained attention in rats: effects of d-amphetamine, nicotine, and pemoline. Exp Clin Psychopharmacol 8: 14–21PubMedCrossRefGoogle Scholar
  23. 23.
    Mirza NR, Bright JL (2001) Nicotine-induced enhancements in the five-choice serial reaction time task in rats are strain-dependent. Psychopharmacology 154: 8–12PubMedCrossRefGoogle Scholar
  24. 24.
    Mirza NR, Stolerman IP (1998) Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology 138: 266–274PubMedCrossRefGoogle Scholar
  25. 25.
    Muir JL, Everitt BJ, Robbins TW (1995) Reversal of visual attentional dysfunction following lesions of the cholinergic basal forebrain by physostigmine and nicotine but not by the 5-HT3 receptor antagonist, ondansetron. Psychopharmacology 118: 82–92PubMedCrossRefGoogle Scholar
  26. 26.
    Rezvani AH, Bushnell P, Levin ED (2002) Nicotine and mecamylamine effects on choice accuracy in an operant signal detection task. Psychopharmacology 164: 369–375PubMedCrossRefGoogle Scholar
  27. 27.
    Rezvani AH, Levin ED (2003) Nicotine interactions with the NMDA glutaminergic antagonist dizocilpine and attentional function. Eur J Pharmacol 465: 83–90PubMedCrossRefGoogle Scholar
  28. 28.
    Stolerman IP, Mirza NR, Hahn B, Shoaib M (2000) Nicotine in an animal model of attention. Eur J Pharmacol 393: 147–154PubMedCrossRefGoogle Scholar
  29. 29.
    Rezvani AH, Levin ED (2003) Nicotine-alcohol interactions and attentional performance on an operant visual signal detection task in female rats. Pharmacol Biochem Behav 76: 75–83PubMedCrossRefGoogle Scholar
  30. 30.
    Grottick AJ, Higgins GA (2000) Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res 117: 197–208PubMedCrossRefGoogle Scholar
  31. 31.
    Ruotsalainen S, Miettinen R, MacDonald E, Koivisto E, Sirvio J (2000) Blockade of muscarinic, rather than nicotinic, receptors impairs attention, but does not interact with serotonin depletion. Psychopharmacology 148: 111–123PubMedCrossRefGoogle Scholar
  32. 32.
    McGaughy J, Decker MW, Sarter M (1999) Enhancement of sustained attention performance by the nicotinic acetylcholine receptor agonist ABT-418 in intact but not basal forebrain-lesioned rats. Psychopharmacology 144: 175–182PubMedCrossRefGoogle Scholar
  33. 33.
    Terry AVJ, Risbrough VB, Buccafusco JJ, Menzaghi F (2002) Effects of (+/−)-4-[[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol hydrochloride (SIB-1553A), a selective ligand for nicotinic acetylcholine receptors, in tests of visual attention and distractibility in rats and monkeys. J Pharmacol Exp Ther 301: 284–292PubMedCrossRefGoogle Scholar
  34. 34.
    Levin ED, Christopher NC, Briggs SJ, Rose JE (1993) Chronic nicotine reverses working memory deficits caused by lesions of the fimbria or medial basalocortical projection. Cognitive Brain Res 1: 137–143CrossRefGoogle Scholar
  35. 35.
    Rezvani AH, Caldwell D, Levin ED (2004) Nicotine-antipsychotic drug interactions and attentional performance. Eur J Pharmacol 486: 175–182PubMedCrossRefGoogle Scholar
  36. 36.
    Levin ED, Simon BB, Conners CK (2000) Nicotine effects and attention deficit disorder. In: Newhouse P, Piasecki M (eds): Nicotine in psychiatry: psychopathology and emerging therapeutics. John Wiley, New York, 203–214Google Scholar
  37. 37.
    Mancuso G, Warburton DM, Melen M, Sherwood N, Tirelli E (1999) Selective effects of nicotine on attentional processes. Psychopharmacology 146: 199–204PubMedCrossRefGoogle Scholar
  38. 38.
    Wilens TE, Biederman J, Spencer TJ, Bostic J, Prince J, Monuteaux MC, Soriano J, Fine C, Abrams A, Rater M, Polisner D (1999) A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder. Am J Psychiat 156: 1931–1937PubMedGoogle Scholar
  39. 39.
    Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36: 539–548PubMedCrossRefGoogle Scholar
  40. 40.
    Kumari V, Gray JA, Ffyche DH, Mitterschiffthalar MT, Das M, Zachariah E, Vythelingum GN, Williams SC, Simmons A, Sharma T (2003) Cognitive effects of nicotine in humans: An fMRI study. Neuroimage 19: 1002–1013PubMedCrossRefGoogle Scholar
  41. 41.
    Durany N, Zochling R, Boissl KW, Paulus W, Ransmayr G, Tatschner T, Danielczyk W, Jellinger K, Deckert J, Riederer P (2000) Human post-mortem striatal alpha4beta2 nicotinic acetylcholine receptor density in schizophrenia and Parkinson’s syndrome. Neurosci Lett 287: 109–112PubMedCrossRefGoogle Scholar
  42. 42.
    Freedman R, Adams CE, Leonard S (2000) The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 20: 299–306PubMedCrossRefGoogle Scholar
  43. 43.
    Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143: 993–997PubMedGoogle Scholar
  44. 44.
    Cornblatt BA, Keilp JG (1994) Impaired attention, genetics, and the pathophysiology of schizophrenia. Schiz Bull 20: 31–46Google Scholar
  45. 45.
    Meltzer HY, Thompson PA, Lee MA, Ranjan R (1996) Neuropsychologic deficits in schizophrenia: relation to social function and effect of antipsychotic drug treatment. Neuropsychopharmacology 14: 27S–33SPubMedCrossRefGoogle Scholar
  46. 46.
    Stip E (1996) Memory impairment in schizophrenia: perspectives from psychopathology and pharmacotherapy. Can J Psychiatry 41: S27–34PubMedGoogle Scholar
  47. 47.
    Alam DA, Janicak PG (2005) The role of psychopharmacotherapy in improving the long-term outcome of schizophrenia. Essential Psychopharmacol 6: 127–140Google Scholar
  48. 48.
    Levin ED, Wilson W, Rose JE, McEvoy J (1996) Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology 15: 429–436PubMedCrossRefGoogle Scholar
  49. 49.
    Mortimer AM (1997) Cognitive function in schizophrenia-do neuroleptics make a difference? Pharmacol Biochem Behav 56: 789–795PubMedCrossRefGoogle Scholar
  50. 50.
    Lee MA, Jayathilake K, Meltzer HY (1999) A comparison of the effect of clozapine with typical neuroleptics on cognitive function in neuroleptic-responsive schizophrenia. Schizophr Res 37: 1–11PubMedCrossRefGoogle Scholar
  51. 51.
    de Leon J, Diaz FJ (2005) A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr Res 76: 135–157PubMedCrossRefGoogle Scholar
  52. 52.
    Poirier MF, Canceil O, Bayle F, Millet B, Bourdel MC, Moatti C, Olie JP, Attar-Levy D (2002) Prevalence of smoking in psychiatric patients. Prog Neuro-Psychopharmacol Biol Psychiat 26: 529–537CrossRefGoogle Scholar
  53. 53.
    Strand JE, Nyback H (2005) Tobacco use in schizophrenia: a study of cotinine concentrations in the saliva of patients and controls. Eur Psychiat 20: 50–54CrossRefGoogle Scholar
  54. 54.
    Aguilar MC, Gurpegui M, Diaz F, de Leon J (2005) Nicotine dependence and symptoms in schizophrenia: naturalistic study of complex interactions. Br J Psychiatry 186: 215–221PubMedCrossRefGoogle Scholar
  55. 55.
    George TP, Vessicchio JC, Termine A, Sahady DM, Head CA, Pepper WT, Kosten TR, Wexler BE (2002) Effects of smoking abstinence on visuospatial working memory function in schizophrenia. Neuropsychopharmacology 26: 75–85PubMedCrossRefGoogle Scholar
  56. 56.
    Weiser M, Reichenberg A, Grotto I, Yasvitzky R, Rabinowitz J, Lubin G, Nahon D, Knobler HY, Davidson M (2004) Higher rates of cigarette smoking in male adolescents before the onset of schizophrenia: a historical-prospective cohort study. Am J Psychiat 161: 1219–1223PubMedCrossRefGoogle Scholar
  57. 57.
    Kumari V, Postma P (2005) Nicotine use in schizophrenia: The self medication hypotheses. Neurosci Biobehav Rev 29: 1021–1034PubMedCrossRefGoogle Scholar
  58. 58.
    Dalack GW, Healy DJ, Meador-Woodruff JH (1998) Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiat 155: 1490–1501PubMedGoogle Scholar
  59. 59.
    Kosten TR, Ziedonis DM (1997) Substance abuse and schizophrenia: editors’ introduction [see comments]. Schizophr Bull 23: 181–186PubMedGoogle Scholar
  60. 60.
    Stassen HH, Bridler R, Hagele S, Hergersberg M, Mehmann B, Schinzel A, Weisbrod M, Scharfetter C (2000) Schizophrenia and smoking: Evidence for a common neurobiological basis? Am J Med Genet 96: 173–177PubMedCrossRefGoogle Scholar
  61. 61.
    Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38: 22–33PubMedCrossRefGoogle Scholar
  62. 62.
    Guan ZZ, Zhang X, Blennow K, Nordberg A (1999) Decreased protein level of nicotinic receptor alpha 7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 10: 1779–1782PubMedGoogle Scholar
  63. 63.
    Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K, Flach K, Nagamoto H, Bickford P, Leonard S, Freedman R (1998) Schizophrenia, sensory gating, and nicotinic receptors. Schizophrenia Bull 24: 189–202Google Scholar
  64. 64.
    Leonard S, Breese C, Adams C, Benhammou K, Gault J, Stevens K, Lee M, Adler L, Olincy A, Ross R, Freedman R (2000) Smoking and schizophrenia: abnormal nicotinic receptor expression. Eur J Pharmacol 393: 237–242PubMedCrossRefGoogle Scholar
  65. 65.
    Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks JM, Rose GM (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and alpha-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15: 152–162PubMedCrossRefGoogle Scholar
  66. 66.
    Addington J (1998) Group treatment for smoking cessation among persons with schizophrenia. Psychiatr Serv 49: 925–928PubMedGoogle Scholar
  67. 67.
    Adler LE, Hoffer LD, Wiser A, Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150: 1856–1861PubMedGoogle Scholar
  68. 68.
    Olincy A, Johnson LL, Ross RG (2003) Differential effects of cigarette smoking on performance of a smooth pursuit and a saccadic eye movement task in schizophrenia. Psychiat Res 117: 223–236CrossRefGoogle Scholar
  69. 69.
    Bettany JH, Levin ED (2001) Ventral hippocampal alpha7 nicotinic receptors and chronic nicotine effects on memory. Pharmacol Biochem Behav 70: 467–474PubMedCrossRefGoogle Scholar
  70. 70.
    Levin ED, Addy N, Arthur D, Wagner Y, Stamm K (2001) Acute and chronic a7 and a4b2 hippocampal nicotinic receptor blockade and memory function in rats. Society for Research on Nicotine and Tobacco, Meeting March 23–25, Seattle, WA, USAGoogle Scholar
  71. 71.
    Levin ED, Bancroft A, Bettany J (2001) Chronic systemic nicotine interaction with a7 and a4b2 hippocampal nicotinic receptors. Society for Research on Nicotine and Tobacco, Meeting March 23–25, Seattle, WA, USAGoogle Scholar
  72. 72.
    Levin ED, Bradley A, Addy N, Sigurani N (2002) Hippocampal alpha 7 and alpha 4 beta 2 nicotinic receptors and working memory. Neuroscience 109: 757–765PubMedCrossRefGoogle Scholar
  73. 73.
    McQuiston AR, Madison DV (1999) Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci 19: 2887–2896PubMedGoogle Scholar
  74. 74.
    Drew AE, Derbez AE, Werling LL (2000) Nicotinic receptor-mediated regulation of dopamine transporter activity in rat prefrontal cortex. Synapse 38: 10–16PubMedCrossRefGoogle Scholar
  75. 75.
    Bancroft A, Levin ED (2000) Ventral hippocampal alpha4beta2 nicotinic receptors and chronic nicotine effects on memory. Neuropharmacology 39: 2770–2778PubMedCrossRefGoogle Scholar
  76. 76.
    Singh A, Potter A, Newhouse P (2004) Nicotinic acetylcholine receptor system and neuropsychiatric disorders. Idrugs 7: 1096–1103PubMedGoogle Scholar
  77. 77.
    Sacco KA, Bannon KL, George TP (2004) Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders. Journal of Psychopharmacology 18: 457–474PubMedCrossRefGoogle Scholar
  78. 78.
    Ripoll N, Bronnec M, Bourin M (2004) Nicotinic receptors and schizophrenia. Curr Med Res Opin 20: 1057–1074PubMedCrossRefGoogle Scholar
  79. 79.
    Newhouse P, Singh A, Potter A (2004) Nicotine and nicotinic receptor involvement in neuropsychiatric disorders. Curr Topics in Medicinal Chem 4: 267–282CrossRefGoogle Scholar
  80. 80.
    Hogg RC, Bertrand D (2004) Nicotinic acetylcholine receptors as drug targets. Curr Drug Targets — CNS & Neurological Disorders 3: 123–130CrossRefGoogle Scholar
  81. 81.
    Newhouse PA, Potter A, Singh A (2004) Effects of nicotinic stimulation on cognitive performance. Curr Opinion in Pharmacol 4: 36–46CrossRefGoogle Scholar
  82. 82.
    Harris J, Kongs S, Allensworth D, Martin L, Tregallas J, Sullivan B, Zerbe G, Freedman R (2004) Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology 29: 1378–1385PubMedCrossRefGoogle Scholar
  83. 83.
    Sacco KA, Termine A, Seyal A, Dudas MM, Vessicchio JC, Krishnan-Sarin S, Jatlow PI, Wexler BE, George TP (2005) Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia: Involvement of nicotinic receptor mechanisms. Arch Gen Psychiatry 62: 649–659PubMedCrossRefGoogle Scholar
  84. 84.
    Tregellas JR, Tanabe JL, Martin LF, Freedman R (2005) FMRI of response to nicotine during a smooth pursuit eye movement task in schizophrenia. Am J Psychiatry 162: 391–393PubMedCrossRefGoogle Scholar
  85. 85.
    Avila MT, Sherr JD, Hong E, Myers CS, Thaker GK (2003) Effects of nicotine on leading saccades during smooth pursuit eye movements in smokers and nonsmokers with schizophrenia. Neuropsychopharmacology 28: 2184–2191PubMedGoogle Scholar
  86. 86.
    Larrison-Faucher AL, Matorin AA, Sereno AB (2004) Nicotine reduces antisaccade errors in task impaired schizophrenic subjects. Prog Neuropsychopharmacol Biol Psychiatry 28: 505–516PubMedCrossRefGoogle Scholar
  87. 87.
    Sherr JD, Myers C, Avila MT, Elliott A, Blaxton TA, Thaker GK (2002) The effects of nicotine on specific eye tracking measures in schizophrenia. Biol Psychiatry 52: 721–728PubMedCrossRefGoogle Scholar
  88. 88.
    Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry 55: 850–858PubMedCrossRefGoogle Scholar
  89. 89.
    Green A, Ellis KA, Ellis J, Bartholomeusz CF, Ilic S, Croft RJ, Phan KL, Nathan PJ (2005) Muscarinic and nicotinic receptor modulation of object and spatial N-back working memory in humans. Pharmacol Biochem Behav 81: 575–584PubMedCrossRefGoogle Scholar
  90. 90.
    Inami R, Kirino E, Inoue R, Arai H (2005) Transdermal nicotine administration enhances automatic auditory processing reflected by mismatch negativity. Pharmacol Biochem Behav 80: 453–461PubMedCrossRefGoogle Scholar
  91. 91.
    Myers CS, Robles O, Kakoyannis AN, Sherr JD, Avila MT, Blaxton TA, Thaker GK (2004) Nicotine improves delayed recognition in schizophrenic patients. Psychopharmacology 174: 334–340PubMedCrossRefGoogle Scholar
  92. 92.
    Smith RC, Singh A, Infante M, Khandat A, Kloos A (2002) Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia. Neuropsychopharmacology 27: 479–497PubMedCrossRefGoogle Scholar
  93. 93.
    DeLuca V, Wong AH, Muller DJ, Wong GW, Tyndale RF, Kennedy JL (2004) Evidence of association between smoking and alpha7 nicotinic receptor subunit gene in schizophrenia patients. Neuropsychopharmacology 29: 1522–1526CrossRefGoogle Scholar
  94. 94.
    De Luca V, Wang H, Squassina A, Wong GW, Yeomans J, Kennedy JL (2004) Linkage of M5 muscarinic and alpha7-nicotinic receptor genes on 15q13 to schizophrenia. Neuropsychobiology 50: 124–127PubMedCrossRefGoogle Scholar
  95. 95.
    Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, Drebing C, Berger R, Venn D, Sirota P et al. (2002) Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry 59: 1085–1096PubMedCrossRefGoogle Scholar
  96. 96.
    Gault J, Hopkins J, Berger R, Drebing C, Logel J, Walton C, Short M, Vianzon R, Olincy A, Ross RG, Adler LE, Freedman R, Leonard S (2003) Comparison of polymorphisms in the alpha7 nicotinic receptor gene and its partial duplication in schizophrenic and control subjects. Am J Med Genet Part B, Neuropsychiatric Genetics 123: 39–49CrossRefGoogle Scholar
  97. 97.
    Freedman R, Olincy A, Ross RG, Waldo MC, Stevens KE, Adler LE, Leonard S (2003) The genetics of sensory gating deficits in schizophrenia. Current Psychiatry Reports 5: 155–161PubMedGoogle Scholar
  98. 98.
    Deutsch SI, Rosse RB, Schwartz BL, Weizman A, Chilton M, Arnold DS, Mastropaolo J (2005) Therapeutic implications of a selective alpha7 nicotinic receptor abnormality in schizophrenia. Israel J Psychiat Related Sci 42: 33–44Google Scholar
  99. 99.
    Tatsumi R, Fujio M, Satoh H, Katayama J, Takanashi S, Hashimoto K, Tanaka H (2005) Discovery of the alpha7 nicotinic acetylcholine receptor agonists. (R)-3′-(5-Chlorothiophen-2-yl)spiro-1-azabicyclo[2.2.2]octane-3,5′-[1′,3′]oxazolidin-2′-one as a novel, potent, selective, and orally bioavailable ligand. J Med Chem 48: 2678–2686PubMedCrossRefGoogle Scholar
  100. 100.
    Koike K, Hashimoto K, Takai N, Shimizu E, Komatsu N, Watanabe H, Nakazato M, Okamura N, Stevens KE, Freedman R, Iyo M (2005) Tropisetron improves deficits in auditory P50 suppression in schizophrenia. Schizophr Res 76: 67–72PubMedCrossRefGoogle Scholar
  101. 101.
    Hajos M, Hurst RS, Hoffmann WE, Krause M, Wall TM, Higdon NR, Groppi VE (2005) The selective alpha7 nicotinic acetylcholine receptor agonist PNU-282987 [N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats. J Pharmacol Exp Ther 312: 1213–1222PubMedCrossRefGoogle Scholar
  102. 102.
    Mastropaolo J, Rosse RB, Deutsch SI (2004) Anabasine, a selective nicotinic acetylcholine receptor agonist, antagonizes MK-801-elicited mouse popping behavior, an animal model of schizophrenia. Behav Brain Res 153: 419–422PubMedCrossRefGoogle Scholar
  103. 103.
    O’Neill HC, Rieger K, Kem WR, Stevens KE (2003) DMXB, an alpha7 nicotinic agonist, normalizes auditory gating in isolation-reared rats. Psychopharmacology 169: 332–339PubMedCrossRefGoogle Scholar
  104. 104.
    Cilia J, Cluderay JE, Robbins MJ, Reavill C, Southam E, Kew JN, Jones DN (2005) Reversal of isolation-rearing-induced PPI deficits by an alpha7 nicotinic receptor agonist. Psychopharmacology 182: 214–219PubMedCrossRefGoogle Scholar
  105. 105.
    Goldberg TE, Weinberger DR (1996) Effects of neuroleptic medications on the cognition of patients with schizophrenia: a review of recent studies. J Clin Psychiatry 57Suppl 9: 62–65PubMedGoogle Scholar
  106. 106.
    McGurk SR (1999) The effects of clozapine on cognitive functioning in schizophrenia. J Clin Psychiatry 60Suppl 12: 24–29PubMedGoogle Scholar
  107. 107.
    Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25: 233–255PubMedGoogle Scholar
  108. 108.
    Goldberg TE, Weinberger DR (1994) The effects of clozapine on neurocognition: an overview. J Clin Psychiatry 55Suppl B: 88–90PubMedGoogle Scholar
  109. 109.
    Hoff AL, Faustman WO, Wieneke M, Espinoza S, Costa M, Wolkowitz O, Csernansky JG (1996) The effects of clozapine on symptom reduction, neurocognitive function, and clinical management in treatment-refractory state hospital schizophrenic inpatients. Neuropsychopharmacology 15: 361–369PubMedCrossRefGoogle Scholar
  110. 110.
    Perez-Gomez M, Junque C (1999) Clozapina: estudios neuropsicologicos y de resonancia magnetica. Actas Esp Psiquiatr 27: 341–346PubMedGoogle Scholar
  111. 111.
    Hagger C, Buckley P, Kenny JT, Friedman L, Ubogy D, Meltzer HY (1993) Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiat 34: 702–712PubMedCrossRefGoogle Scholar
  112. 112.
    Murphy BL, Roth RH, Arnsten AF (1997) Clozapine reverses the spatial working memory deficits induced by FG7142 in monkeys. Neuropsychopharmacology 16: 433–437PubMedCrossRefGoogle Scholar
  113. 113.
    Didriksen M (1995) Effects of antipsychotics on cognitive behaviour in rats using the delayed non-match to position paradigm. Eur J Pharmacol 281: 241–250PubMedCrossRefGoogle Scholar
  114. 114.
    Skarsfeldt T (1996) Differential effect of antipsychotics on place navigation of rats in the Morris water maze. A comparative study between novel and reference antipsychotics. Psychopharmacology 124: 126–133PubMedCrossRefGoogle Scholar
  115. 115.
    Simosky JK, Stevens KE, Adler LE, Freedman R (2003) Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology 165: 386–396PubMedGoogle Scholar
  116. 116.
    Neil W, Curran S, Wattis J (2003) Antipsychotic prescribing in older people [see comment]. Age & Ageing 32: 475–483CrossRefGoogle Scholar
  117. 117.
    Hellstrom-Lindahl E, Court J (2000) Nicotinic acetylcholine receptors during prenatal development and brain pathology in human aging. Behav Brain Res 113: 159–168PubMedCrossRefGoogle Scholar
  118. 118.
    Levin ED, Galen DM, Ellison GD (1987) Chronic haloperidol effects on oral movements and radial-arm maze performance in rats. Pharmacol Biochem Behav 26: 1–6PubMedCrossRefGoogle Scholar
  119. 119.
    Ellison GD, Johansson P, Levin ED, See RE, Gunne L (1988) Chronic neuroleptics alter the effects of the D1 agonist SK&F 38393 and the D2 agonist LY 171555 on oral movements in rats. Psychopharmacology 96: 253–257PubMedCrossRefGoogle Scholar
  120. 120.
    McGurk S, Levin ED, Butcher LL (1988) Cholinergic-dopaminergic interactions in radial-arm maze performance. Behav Neural Biol 49: 234–239PubMedCrossRefGoogle Scholar
  121. 121.
    Levin ED, Petro A, Beatty A (2005) Olanzapine interactions with nicotine and mecamylamine in rats: effects on memory. Neurotoxicol Teratol 27: 459–464PubMedCrossRefGoogle Scholar
  122. 122.
    Addy N, Levin ED (2002) Nicotine interactions with haloperidol, clozapine and risperidone and working memory function in rats. Neuropsychopharmacology 27: 534–541PubMedCrossRefGoogle Scholar
  123. 123.
    Zhang W, Bymaster FP (1999) The in vivo effects of olanzapine and other antipsychotic agents on receptor occupancy and antagonism of dopamine D1, D2, D3, 5HT2A and muscarinic receptors. Psychopharmacology 141: 267–278PubMedCrossRefGoogle Scholar
  124. 124.
    Green MF, Marshall BD, Jr., Wirshing WC, Ames D, Marder SR, McGurk S, Kern R S, Mintz J (1997) Does risperidone improve verbal working memory in treatment-resistant schizophrenia? Am J Psychiat 154: 799–804PubMedGoogle Scholar
  125. 125.
    Sharma T, Mockler D (1998) The cognitive efficacy of atypical antipsychotics in schizophrenia. J Clin Psychopharmacol 18: 12S–19SPubMedCrossRefGoogle Scholar
  126. 126.
    Weinberger DR, Gallhofer B (1997) Cognitive function in schizophrenia. Int Clin Psychopharmacol 12Suppl 4: S29–36PubMedGoogle Scholar
  127. 127.
    de Haan L, Booij J, Lavalaye J, van Amelsvoort T, Linszen D (2006) Occupancy of dopamine D2 receptors by antipsychotic drugs is related to nicotine addiction in young patients with schizophrenia. Psychopharmacology 183: 500–505PubMedCrossRefGoogle Scholar
  128. 128.
    Drew AE, Werling LL (2003) Nicotinic receptor-mediated regulation of the dopamine transporter in rat prefrontocortical slices following chronic in vivo administration of nicotine. Schizophr Res 65: 47–55PubMedCrossRefGoogle Scholar
  129. 129.
    Lambe EK, Picciotto MR, Aghajanian GK (2003) Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28: 216–225PubMedCrossRefGoogle Scholar
  130. 130.
    Silvestri S, Negrete JC, Seeman MV, Shammi CM, Seeman P (2004) Does nicotine affect D2 receptor upregulation? A case-control study. Acta Psychiatrica Scandinavica 109: 313–317; discussion 317–318PubMedCrossRefGoogle Scholar
  131. 131.
    Schwieler L, Engberg G, Erhardt S (2004) Clozapine modulates midbrain dopamine neuron firing via interaction with the NMDA receptor complex. Synapse 52: 114–122PubMedCrossRefGoogle Scholar
  132. 132.
    Schwieler L, Erhardt S (2003) Inhibitory action of clozapine on rat ventral tegmental area dopamine neurons following increased levels of endogenous kynurenic acid. Neuropsychopharmacology 28: 1770–1777PubMedCrossRefGoogle Scholar
  133. 133.
    Levin ED, Gunne LM (1989) Chronic neuroleptic effects on spatial reversal learning in monkeys. Psychopharmacology 97: 496–500PubMedCrossRefGoogle Scholar
  134. 134.
    Rezvani AH, Caldwell D, Levin ED (2006) Chronic nicotine interactions with clozapine and risperidone and attentional function in rats. Prog Neuropsychopharmacol Biol Psychiatry 30: 190–197PubMedCrossRefGoogle Scholar
  135. 135.
    Wilkerson A, Levin ED (1999) Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neuroscience 89: 743–749PubMedCrossRefGoogle Scholar
  136. 136.
    McEvoy J, Freudenreich O, McGee M, Vanderzwaag C, Levin ED, Rose J (1995) Clozapine decreases smoking in patients with chronic schizophrenia. Biol Psychiat 37: 550–552PubMedCrossRefGoogle Scholar
  137. 137.
    Levin ED, Icenogle L, Farzad A (2005) Ketanserin attenuates nicotine-induced working memory improvement in rats. Pharmacol Biochem Behav 82: 289–292PubMedCrossRefGoogle Scholar
  138. 138.
    Rezvani AH, Caldwell DP, Levin ED (2005) Nicotine-serotonergic drug interactions and attentional performance in rats. Psychopharmacology 179: 521–528PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2006

Authors and Affiliations

  • Edward D. Levin
    • 1
  • Amir H. Rezvani
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA

Personalised recommendations