Advertisement

Keywords

Toeplitz Operator Banach Algebra Limit Operator Band Operator Commutative Banach Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.10 Comments and References

  1. [5]
    A. Böttcher and S. M. Grudsky: Spectral Properties of Banded Toeplitz Matrices, SIAM, Philadelphia 2005.MATHGoogle Scholar
  2. [17]
    S. N. Chandler-Wilde and M. Lindner: Generalized Collective Compactness and Limit Operators, submitted to Integral Equations Operator Theory (2006).Google Scholar
  3. [26]
    E. B. Davies: Spectral Theory of Pseudo-Ergodic Operators, Commun. Math. Phys. 216 (2001), 687–704.MATHCrossRefGoogle Scholar
  4. [28]
    J. A. Favard: Sur les equations differentiales a coefficients presque periodiques, Acta Math. 51 (1927), 31–81.MATHGoogle Scholar
  5. [35]
    R. Hagen, S. Roch and B. Silbermann: Spectral Theory of Approximation Methods for Convolution Equations, Birkhäuser Verlag, 1995.Google Scholar
  6. [36]
    R. Hagen, S. Roch and B. Silbermann: C*-Algebras and Numerical Analysis, Marcel Dekker, Inc., New York, Basel, 2001.MATHGoogle Scholar
  7. [43]
    B. V. Lange and V. S. Rabinovich: On the Noether property of multidimensional discrete convolutions, Mat. Zam. 37 (1985), no. 3, 407–421.MATHMathSciNetGoogle Scholar
  8. [44]
    B. V. Lange and V. S. Rabinovich: On the Noether property of multidimensional operators of convolution type with measurable bounded coefficients, Izv. Vyssh. Uchebn. Zaved., Mat. 6 (1985), 22–30 (Russian).MATHMathSciNetGoogle Scholar
  9. [45]
    B. V. Lange and V. S. Rabinovich: Pseudo-differential operators on Rn and limit operators, Mat. Sbornik 129 (1986), no. 2, 175–185 (Russian, English transl. Math. USSR Sbornik 577 (1987), no. 1, 183–194).MATHMathSciNetGoogle Scholar
  10. [47]
    M. Lindner and B. Silbermann: Invertibility at infinity of band-dominated operators in the space of essentially bounded functions, In: Operator Theory — Advances and Applications 147, The Erhard Meister Memorial Volume, Birkhäuser 2003, 295–323.Google Scholar
  11. [49]
    M. Lindner: Classes of Multiplication Operators and Their Limit Operators, Journal for Analysis and its Applications 23 (2004), no. 1, 187–204.MATHMathSciNetGoogle Scholar
  12. [50]
    M. Lindner: Limit Operators and Applications on the Space of essentially bounded Functions, Dissertation, TU Chemnitz 2003.Google Scholar
  13. [54]
    E. M. Muhamadiev: On normal solvability and Noether property of elliptic operators in spacesof functions on ℝn, Part I: Zapiski nauchnih sem. LOMI 110 (1981), 120–140 (Russian).MATHGoogle Scholar
  14. [55]
    E. M. Muhamadiev: On normal solvability and Noether property of elliptic operators in spacesof functions on ℝn, Part II: Zapiski nauchnih sem. LOMI 138 (1985), 108–126 (Russian).Google Scholar
  15. [59]
    V. S. Rabinovich: Fredholmness of pseudo-differential operators on ℝn in the scale of L p,q-spaces, Sib. Mat. Zh. 29 (1988), no. 4, 635–646 (Russian, English transl. Sib. Math. J. 29 (1998), no. 4, 635–646).MATHMathSciNetCrossRefGoogle Scholar
  16. [60]
    V. S. Rabinovich: Criterion for local invertibility of pseudo-differential operators with operator symbols and some applications, In: Proceedings of the St. Petersburg Mathematical Society, V, AMS Transl. Series 2, 193 (1998), 239–260.MATHGoogle Scholar
  17. [61]
    V. S. Rabinovich and S. Roch: Local theory of the Fredholmness of band-dominated operators with slowly oscillating coefficients, Toeplitz matrices and singular integral equations (Pobershau, 2001), 267–291, Oper. Theory Adv. Appl., 135, Birkhäuser, Basel, 2002.Google Scholar
  18. [62]
    V. S. Rabinovich and S. Roch: An axiomatic approach to the limit operators method, In: Singular integral operators, factorization and applications, Operator Theory: Advances and Applications, 142, 263–285, Birkhäuser, Basel, 2003.Google Scholar
  19. [63]
    V. S. Rabinovich and S. Roch: Algebras of approximation sequences: Spectral and pseudo-spectral approximation of band-dominated operators, Linear algebra, numerical functional analysis and wavelet analysis, 167–188, Allied Publ., New Delhi, 2003.Google Scholar
  20. [66]
    V. S. Rabinovich, S. Roch and J. Roe: Fredholm indices of band-dominated operators, Integral Equations Operator Theory 49 (2004), no. 2, 221–238.MATHMathSciNetCrossRefGoogle Scholar
  21. [67]
    V. S. Rabinovich, S. Roch and B. Silbermann: Fredholm Theory and Finite Section Method for Band-dominated operators, Integral Equations Operator Theory 30 (1998), no. 4, 452–495.MATHMathSciNetCrossRefGoogle Scholar
  22. [68]
    V. S. Rabinovich, S. Roch and B. Silbermann: Band-dominated operators with operator-valued coefficients, their Fredholm properties and finite sections, Integral Equations Operator Theory 40 (2001), no. 3, 342–381.MATHMathSciNetCrossRefGoogle Scholar
  23. [70]
    V. S. Rabinovich, S. Roch and B. Silbermann: Limit Operators and Their Applications in Operator Theory, Operator Theory: Advances and Applications, 150, Birkhäuser Basel 2004.Google Scholar
  24. [74]
    S. Roch: Band-dominated operators on p spaces: Fredholm indices and finite sections, Acta Sci. Math. 70 (2004), no. 3–4, 783–797.MATHMathSciNetGoogle Scholar
  25. [83]
    I. B. Simonenko: On multidimensional discrete convolutions, Mat. Issled. 3 (1968), no. 1, 108–127 (Russian).MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 2006

Personalised recommendations