Advertisement

Keywords

Banach Space Matrix Representation Strong Convergence Banach Algebra Continuous Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.8 Comments and References

  1. [8]
    A. Böttcher and B. Silbermann: Infinite Toeplitz and Hankel matrices with operator-values entries., SIAM J. Math. Anal., 27 (1996), 3, 805–822.MATHMathSciNetCrossRefGoogle Scholar
  2. [9]
    A. Böttcher and B. Silbermann: Analysis of Toeplitz Operators, Akademie-Verlag, Berlin, 1989 and Springer Verlag, Berlin, Heidelberg, New York 1990, 2nd edition: Springer Verlag, Berlin, Heidelberg, New York 2006.MATHGoogle Scholar
  3. [17]
    S. N. Chandler-Wilde and M. Lindner: Generalized Collective Compactness and Limit Operators, submitted to Integral Equations Operator Theory (2006).Google Scholar
  4. [29]
    I. Gohberg and I. A. Feldman: Convolution equations and projection methods for their solutions, Nauka, Moskva 1971 (Russian; Engl. translation: Amer. Math. Soc. Transl. of Math. Monographs 41, Providence, R.I. 1974).Google Scholar
  5. [30]
    I. Gohberg and M. G. Krein: Systems of integral equations on the semiaxis with kernels depending on the difference of arguments, Usp. Mat. Nauk 13 (1958), no. 5, 3–72 (Russian).MathSciNetGoogle Scholar
  6. [36]
    R. Hagen, S. Roch and B. Silbermann: C*-Algebras and Numerical Analysis, Marcel Dekker, Inc., New York, Basel, 2001.MATHGoogle Scholar
  7. [40]
    M. G. Krein: Integral equations on the semi-axis with kernels depending on the difference of arguments, Usp. Mat. Nauk 13 (1958), no. 2, 3–120 (Russian).MATHMathSciNetGoogle Scholar
  8. [41]
    V. G. Kurbatov: Functional Differential Operators and Equations, Kluwer Academic Publishers, Dordrecht, Boston, London 1999.MATHGoogle Scholar
  9. [43]
    B. V. Lange and V. S. Rabinovich: On the Noether property of multidimensional discrete convolutions, Mat. Zam. 37 (1985), no. 3, 407–421.MATHMathSciNetGoogle Scholar
  10. [50]
    M. Lindner: Limit Operators and Applications on the Space of essentially bounded Functions, Dissertation, TU Chemnitz 2003.Google Scholar
  11. [58]
    S. Prössdorf and B. Silbermann: Numerical Analysis for Integral and Related Operator Equations, Akademie-Verlag, Berlin, 1991 and Birkhäuser Verlag, Basel, Boston, Berlin 1991.MATHGoogle Scholar
  12. [67]
    V. S. Rabinovich, S. Roch and B. Silbermann: Fredholm Theory and Finite Section Method for Band-dominated operators, Integral Equations Operator Theory 30 (1998), no. 4, 452–495.MATHMathSciNetCrossRefGoogle Scholar
  13. [68]
    V. S. Rabinovich, S. Roch and B. Silbermann: Band-dominated operators with operator-valued coefficients, their Fredholm properties and finite sections, Integral Equations Operator Theory 40 (2001), no. 3, 342–381.MATHMathSciNetCrossRefGoogle Scholar
  14. [70]
    V. S. Rabinovich, S. Roch and B. Silbermann: Limit Operators and Their Applications in Operator Theory, Operator Theory: Advances and Applications, 150, Birkhäuser Basel 2004.Google Scholar
  15. [76]
    S. Roch and B. Silbermann: Non-strongly converging approximation methods, Demonstratio Math. 22 (1989), no. 3, 651–676.MATHMathSciNetGoogle Scholar
  16. [82]
    I. B. Simonenko: Operators of convolution type in cones, Mat. Sb. 74(116), (1967), 298–313 (Russian).MATHMathSciNetGoogle Scholar
  17. [83]
    I. B. Simonenko: On multidimensional discrete convolutions, Mat. Issled. 3 (1968), no. 1, 108–127 (Russian).MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 2006

Personalised recommendations